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Foreword

At one point in Dialogues on Mathematics by Alfréd Rényi Archimedes is 
explaining to King Hieron that only those who like mathematics for itself 
can apply its results successfully, and he says: "... mathematics rewards only 
those who are interested in it not only for its rewards but also for itself. Mathe
matics is like your daughter, Helena, who suspects every time a suitor appears 
that he is not really in love with her, but is only interested in her because he 
wants to be the king’s son-in-law. She wants a husband who loves her for her 
own beauty, wit and charm, and not for the wealth and power he can get 
by marrying her. Similarly, mathematics reveals its secrets only to those who 
approach it with pure love, for its own beauty. Of course, those who do this 
are also rewarded with results of practical importance. But if somebody asks 
at each step, ‘What can I get out of this?’ he will not get far. You remember 
I told you that the Romans would never be really successful in applying mathe
matics. Well, now you can see why: the yare too practical.” (From A. Rényi: 
Dialogues on Mathematics, Holden-Day.)

The entire oeuvre of Rényi is permeated with his love of mathematics. 
Throughout his life he was devoted to mathematics as a lover is to his beloved. 
But what truly characterizes Rényi and makes him unique among outstanding 
mathematicians is not this unconditional love of mathematics, which is com
mon to all true mathematicians. What distinguishes Rényi as a mathematician 
was that he loved people with the same fervour with which he loved mathe
matics so that he wanted to make mathematics a gift to them, a source of 
pleasure and joy.

Devoted to his research work, he was always striving at the same time to 
bring mathematics close to as many people as possible. Sometimes he accom
plished this by solving concrete practical problems, thus demonstrating that 
modern mathematics can have many applications. He was the first in Hungary 
to construct a mathematical model in economics, and to achieve results in 
the fields of chemistry and biology by using the theory of stochastic processes.

On other occasions, he tried to bring mathematics closer to the layman in
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writings which even from a literary point of view are excellent. Those which 
are probably best known are the two books entitled: Dialogues on Mathe
matics and Letters on Probability.

The first part of the present book, entitled: “On the Mathematical Notion 
of Information”, is intended to be a continuation of those two books. Unfor
tunately, it was left unfinished at his untimely death. The final chapter of the 
text given here was completed from Rényi’s own notes by one of his pupils, 
Gyula Katona. I think the reader will find this book a natural continuation of 
the previous two. This one, too, was not written with the aim of teaching a 
particular field of mathematics. Its intent is to explain what mathematics is, 
what it can contribute to our everyday lives, how it can further the develop
ment of the way we think and how we can enjoy its beauty.

There are striking similarities among these works in style as well. For 
example, in this most recent work, it is again not the author himself who 
speaks. Instead, he uses another person, this time an imaginary student of his, 
to convey his thoughts. Rényi was very proud of the fact that many readers 
of his Letters on Probability believed Pascal to be the author of the letters. 
For example, he used to tell with pleasure how, when a French publisher was 
having the book translated, the translator, after reading part of it, asked why 
it needed to be translated at all since Pascal must have written the original in 
French.

I am sure that Rényi would also be pleased to hear that some reader of 
this current book had believed himself to be reading the actual diary of a uni
versity student.

Although I am sure that Rényi’s style makes it quite possible to believe that 
one has before one the writings of a young man who was just becoming 
acquainted with his subject, readers, if they do not let themselves be led astray 
by the style, but recognize the depth of thought being presented, must realize 
that this “diary” could only have been written by one who understands the 
whole subject in all of its depth as well as the breadth of its technical com
plexities.

I would like to highlight one more similarity which connects these three 
works by Rényi. When these books were being written there were many, some
times very heated, disputes taking place among Hungarian mathematicians 
about the application and teaching of mathematics, the relation between pure 
and applied mathematics and many other questions every mathematician is 
interested in.

Rényi thought it necessary to communicate his ideas on these questions not 
only to a limited group of mathematicians but also to explain these problems 
and his opinions about them to anyone who might be interested. I would
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therefore ask the reader to remember that he will not meet only widely accepted 
truths in this book but also opinions the author fought very hard to have 
accepted. He wanted this work to be a weapon in that battle.

This volume also contains some other popular articles by Rényi, most of 
which appeared in various journals. Their message too is how one can come 
to like mathematics. One needs some mathematical knowledge to be able to 
read some of them, yet, even if some readers lack the necessary knowledge and 
cannot follow them all the way through, they will certainly find sufficient 
incisive thoughts in them to make them enjoyable. (This remark relates to 
the diary too.) For example, at the end of “Games of Chance and Probability 
Theory”, several mathematical tools are employed which are not generally 
known as they are not taught in high school or at university. Nevertheless, 
I feel that all readers can benefit from the first part of the paper. An attempt 
has been made to explain the technical details in a series of footnotes written 
by Gyula Katona. It is hoped that they will be of assistance to the reader.

Pál Révész





On the mathematical notion of information
Diary of a university student

PREFACE

A couple of years ago, just after the oral examinations, I found in my mail 
a heavy bundle of papers accompanied by a letter from one of my recently 
graduated students. The letter read:

“Dear Professor, I am sending this draft to you to fulfill the promise I made 
during our talk after my oral examination. Let me recall that conversation for 
you since I remember it very clearly. While it was very important for me 
because of its subject, I would not be at all surprised if you have forgotten its 
details since you are busy with many other things.

The title of my thesis was: “The mathematical notion of information”. 
After I had successfully defended it you encouraged me to publish it because, 
as you explained, no good book or monograph has as yet been published in 
Hungarian discussing the fundamental problems of information theory at an 
adequate level while still being understandable to the layman. For this purpose, 
you continued, I should change the style of the thesis, which is now too theo
retical and dull for a non-mathematician. Moreover, it assumes a background 
knowledge that most laymen do not possess. I replied that I would be more 
than glad to do so. I even indicated that I had based the thesis on a diary 
which I had kept during my studies of information theory and in which I had 
recorded all of my thoughts on the subject, later “translating” it into the 
usual technical thesis-language. And I remarked that while the diary was not 
ready for printing in its original form, its tone was much more appropriate 
for the purpose so that it would be more profitable for me to work on that 
than the thesis. You answered that you would be glad to look into this diary, 
if there were no personal remarks I didn’t want anyone to see. So I promised 
to send it to you.

Since then, I have been notified that I got the job at the Univ. of Mada
gascar that UNESCO had been advertising. When you receive my letter, I will 
be on my way to Madagascar, probably for three years. The main reason 
I applied for this job was that after my exam I got married and we don’t 
have an apartment. So now this problem will be taken care of for three years
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and I even hope to be able to save enough money while we are there to buy 
an apartment when we return. This place may not be the most appropriate 
for the scientific work which you encouraged me to pursue, but I hope that 
I’ll have time to work on the problems you mentioned and I’ll report the 
results, if any, to you. I’d greatly appreciate it if you’d be so kind as to take 
the time to answer my letters and give me your suggestions on my work.

As far as the enclosed diary is concerned, I doubt that I’ll have the time in 
Madagascar to work on it. Therefore I would like to ask you to look into it 
and see if it can be used in any way. If you think so, would you please ask 
someone else to make the necessary changes. I would be glad if my diary, 
changed or not, could be published, but I would ask you by all means to keep 
my name a secret. My reasons for this request are the following: 1. I have 
no illusions about the originality of the thoughts written in the diary. They 
were stimulated by the lectures I attended while I was at the University and 
therefore they are probably somewhat more the intellectual property of my 
professors than mine. 2. Those which I feel are my own original thoughts are 
the ones which relate to education at the University. I don’t know if you will 
leave those in or cross them out. In the former case, it is even more important 
that my name not be connected with the diary, since I hope to get a position 
at the University on my return from Madagascar. I’m afraid it would not be 
wise to have my critical remarks published under my own name. (Perhaps my 
anxiety seems excessive but unfortunately, I have learned the hard way that 
it’s better to be cautious.)

I would like to thank you again for your help and attention during my stud
ies,

Sincerely yours:
Bonifác Donát”.

After reading the diary, I was convinced that it should be published without 
any modification, rewriting or deletion. Any change would only decrease its 
authenticity and freshness. Of course, I disagree with Donat’s rationale for 
keeping his authorship anonymous. First of all, it is not true that his diary 
reflects only ideas he had heard at the lectures: there are many really original 
thoughts presented in novel ways which should be considered his own. As for 
the critical remarks, even if they are not mature they should be considered 
seriously, because their aim is the improvement of university education. Since 
education is for the students and not vice versa, students do have the right 
to form and express independent opinions about education, the way they are 
taught. And if they take the time to think about it seriously, no one should 
reproach them for doing so, even if he doesn’t agree with them. Therefore
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I find Donát’s concern, that there might be problems with his future uni
versity position because of these critical remarks, unfounded. I can surmise, 
of course, what kind of bad experiences Donit was referring to. It so happens 
that I wanted to hire him as a teaching assistant. For this reason several 
members of the Department interviewed him and as is usual in such cases, 
asked him about his studies, extracurricular activities, etc. In the end, unfor
tunately, nothing came of the appointment for budgetary reasons, but it seems 
Donit attributed this to other reasons.

However, even though I disagree with his reasons, I will obey his wish. 
Accordingly, I have given him the pseudonym of Bonifác Donit1. Of course, 
if he is willing to shed his anonymity in a few years, I will be glad to attest 
to his authorship. Until such time, let him remain anonymous, but his diary 
should be published2. I hope that it will help many thoughtful people to 
find their way through the difficult but important fundamental questions of 
information theory, and, as Donit did, formulate their own views based on 
the facts and arguments set out therein.

Alfréd Rényi

1 Those who know Latin will realize that this name refers to the diary given to me by my 
student.

2 I will publish only the first part of the diary, the one which deals with fundamental 
notions of information theory. The second part concerns information theoretical theorems 
using a more extended mathematical apparatus and so would not be understandable to the 
layman. This part, in any case, is in quite a different style. The “diary-like” character gives 
way to something like that of a causal notebook. Probably because Donát was by then so 
involved with what for him were the new, strictly mathematical problems and their accom
panying difficulties, that he did not have the time to reflect on the more fundamental ques
tions. This is quite unfortunate, because such reflections are exactly what makes the first part 
so interesting and instructive for both kinds of readers, mathematician and non-mathema
tician alike.
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THE DIARY

I keep six honest serving-men 
(They taught me all I knew);

Their names are What and Why and When 
And How and Where and Who.

(Kipling)

First lecture

Today was the first lecture on information theory. The lecturer seems good. 
He started by saying that this field of mathematics is not even twenty years 
old*, i.e. when we (who were sitting there) had been born information theory 
didn’t exist. Probably it’s very impulsive of me to take such a fancy to an 
idea, but at that moment, before I had heard anything further about informa
tion theory, I decided to study it very seriously. Right away I decided to 
keep a diary instead of ordinary lecture notes on this subject. That is, I will 
put into writing not only what I hear in the lectures but my own thoughts as 
well, both the questions I ask myself, and, of course, the answers, too, if I can 
find any. That is why I chose Kipling’s poem as a motto. As I listened to 
the lecturer, this intention grew stronger in me. I liked it very much when he 
said that he was going to organize the lectures as seminars, that he wanted 
us to participate in them actively, by asking questions whenever something 
is not clear and that he would question us, from time to time, too. I like this 
much better than those courses where the lecturer just pontificates and our 
only role is to listen in silence. When a lecturer lets anyone interrupt his talk, 
that means he is not afraid of what we might ask him, something he might 
not be able to answer. Of course, it is quite stupid if a lecturer is really afraid 
of this, because we don’t expect a teacher to know everything. Someone who 
knows his subject doesn’t get embarrassed in such situations. Last year, for 
example, one of my classmates asked a question of a professor who said it 
was a new and very interesting problem that nobody had solved as far as he 
knew. He promised to think about it some more. At the next lecture, he said 
that he had found a solution, which really had not been known before and 
that he was going to include the problem and its solution in his latest book 
which was soon to be published with a note that it was my classmate who had 
formulated it. Unfortunately, there are professors who react quite differently. 
In our second year, we had one who once gave a false proof for a theorem.

The manuscript was written in 1969. (Publisher)
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When a few of us pointed out that we didn’t understand a certain step in the 
proof (the one which was wrong), he told us offhandedly to pay more atten
tion next time.

The lecturer started by speaking about the importance of the notion of 
information. He said he was sure we were adequately informed about this 
matter so that he would only talk about it briefly. As he pointed out, informa
tion is transmitted in every living system, like the human body; the sensory 
systems collect information from the outside world to be transmitted via the 
nervous system to the brain. The brain, after some information processing, 
sends commands, which are information too, to the muscles via nerve cells 
again. Similarly, in a factory or any other organization where many people 
interact, there is a continuous flow of information in the form of reports, 
orders, queries without which collaboration is not possible. He remarked that 
in every great achievement of modern technology, the transmission, processing, 
and storage of information play the main role. For example, one of the prin
cipal problems in space flight involves the transmission of information between 
the spacecraft and the control center. The essence of the computer is that 
it can process a large amount of information at great speed in accordance 
with a given program (which is itself a form of information). One of the 
chief problems of automation is that of the information exchange among the 
different parts of the machine. Feedback, for example, means that the central 
processing unit receives information about how the machine is carrying out 
its commands and, based on this information, modifies its instructions appro
priately.

The lecturer indicated that the mathematical theory of information had 
come into being when it was realized that the flow of information can be 
expressed numerically in the same way as distance, time, mass, temperature, 
etc.

He explained this by referring to the game known as “Bar-kochba”*.
One can measure the information needed to guess the message that the 

others have decided on by the number of questions required to get that infor
mation when one is using the most effective system of questioning. “Question”, 
according to the rules of the game, means a question that can be answered 
with a “yes” or a “no”. If we write the answers down by writing 1 for a “yes” 
and 0 for a “no”, the answer-series (which characterizes uniquely the “some
thing or somebody” we have to guess) is replaced by a sign sequence. This 
procedure is called coding and the sign sequences of 0’s and l’s are called

(Translator’s note: this game is similar to “Twenty Questions”. See p. 13.)
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codewords. It is well known that every natural number can be expressed with 
ones and zeroes, i.e., written in the binary system. Briefly:

1, 2, 3, 4, 5, 6, 7, 8 in the binary number system take the form of: 1, 0, 11, 100, 101, 110, 
111, 1000, i.e., when adding 1, the final digit has to be increased by one; but if the result 
would be two, the digit should be “changed” to zero and a 1 written in the next left posi
tion, etc. So going from right to left, a 1 in the first position means 1, in the second it 
means 2, in the third, 22 = 4, in the fourth, 23=8, etc. For example, 1110 is the binary 
expression of 8+4+2=14.

(Gy. Katona)

But it is evident, too, that any text can be expressed or coded in a sequence 
of l’s and 0’s. This can be done, for example, by associating a 0, 1-sequence 
with every letter in the alphabet and then by rewriting the text letter by letter. 
If we start with the alphabet abcdefghijklmnopqrstuvwxyz of 
24 letters and include the period, space, semicolon, comma, colon and quota
tion mark, then we need 32 such sequences. There are exactly 32 possible 
sequences made up of 5 digits of 0’s or l’s; therefore we can assign one such 
5-digit sequence to every letter and symbol. Now the text will consist of five 
times as many signs as before. Every message, every piece of information 
may thus be encoded in a sequence of zeros and ones. The practical con
sequence of this fact lies in computer programming. The “mother tongue” of 
a computer is the binary number system and therefore not only the data but 
all instructions have to be coded in sequences of l’s and 0’s. It seems reason
able to measure the amount of information in a message by the number of 
signs needed to express it in zeros and ones (using the most appropriate way 
to code, i.e., to get the shortest sequence). The lecturer emphasized that this 
is not yet the precise mathematical definition that we would see later on. 
It is only a way of expressing what is meant by an amount of information, 
and it can help us to get an idea of this concept. We should consider what he 
had said to be a first step towards the concept of information. He stressed 
that when we want to measure information, to quantify it with numbers, we 
deliberately ignore features like its content and importance.

The example he gave to clarify this was a great successs (especially with 
the girls): the answer to the question, “Miss, do you like cheese?” - regardless 
of whether it is a yes or a no - consists of 1 unit of information, but so does 
the answer to, “Miss, will you marry me?” although the importance and the 
content of the two replies are very different. He pointed out that according 
to what he had said so far, the answer to a question which can only be answered 
with a “yes” or “no” contains one unit of information, the meaning of the 
particular question being irrelevant.
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To put this another way: the unit of information is the amount of informa
tion which oan be expressed (coded) with one 0 or 1 only. Accordingly, if we 
write an arbitrary number in the binary system, the measure of information 
of every digit is 1. This is the way that the unit of information got its name: 
it is called a “bit”, the abbreviation of “binary digit” (i.e., a digit in a number 
expressed in binary form). There is also a little pun hidden in this name, 
since “bit” means a small piece or morsel. So a “bit” isa morsel of informa
tion.

In general, he told us further, coding is necessary for the transmission of 
information. The method of encoding depends on the type of transmission. 
For example, for the transmission of telegrams, the message is coded in the 
Morse code, in which sequences of dots and dashes are assigned to letters. 
The TV transmitter codes the picture by decomposing it into small dots. 
According to how dark or light a particular dot is it emits an appropriate 
signal which is then transmitted via electromagnetic waves to the IV receiver 
to be transformed (i.e. decoded) into a picture. One can also give a much 
simpler example of coding, namely writing, where letters are assigned to 
phonemes and reading the text corresponds to decoding it. Information is 
coded in our brains, too, before it is stored in our memory, although we don’t 
know yet how this coding/decoding is accomplished. Putting a knot in your 
handkerchief to help you remember some specific thing is also coding. The 
lecturer mentioned that some Indian tribes managed to develop this kind of 
coding to a very sophisticated level, so that they could send messages to each 
other by means of knots on a string. Again, it is coding when tourists, trapped 
in the Alps, sends SOS signals with whistles or when ships communicate with 
light signals. All kinds of secret codes are, of course, examples of coding. In 
fact, this is the origin of the word “coding” itself. A record or a tape contains 
speech or music in a coded form. One of us remarked that this just goes to 
show that we are in the same situation with coding as the character in the 
play by Moliere, who didn’t know that he had been speaking prose all his life. 
In the same way we didn’t know that we are coding and decoding in almost all 
of our activities.

There were exactly 32 of us attending this lecture. The lecturer asked if he 
had one of us in mind, how many questions would be needed to find out 
who that person was. I realized the answer right away: 5 questions. He asked 
what strategy I would use. I answered that I would write down the names of all 
persons in the class in alphabetical order and, as a first question, I would ask 
if the name was among the first 16. Regardless of whether the answer were 
“yes” or “no”, the number of the possible names would now be only 16. 
Similarly, with the second question the number of remaining possibilities
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would be reduced to 8, with the third to 4, and after the fourth there could be 
only two, so that by asking the fifth question I would be able with certainty to 
determine which of the 32 students he had in mind. Then he asked me what 
would happen if I had to ask all five questions one after the other, without 
getting an answer before all the questions were asked. Would 5 questions be 
enough then? My answer was that I didn’t know, because when I played 
“Bar-kochba”, I always decided on the next question after considering the 
foregoing answers, but that my hunch was it would take more than 5 ques
tions. But I was wrong! The professor explained to us how one can ask 5 
questions so that one can figure out from the answers who the one person is. 
One has to number the students from 0 to 31 and write the binary representa
tion of each of these numbers. There are now 32 sequences, each consisting 
of 5 digits of 0 or 1, corresponding to the 32 students.

(The numbers expressible by 1,2, 3, or 4 digits are to be completed by zeros 
to give five digits, for example, 0=00000, 1 = 00001.)

I am the 14th on the list, and so the number OHIO corresponds to my name. 
(Bonifác Donát is referring of course, to his real name. He is not aware of 
the pseudonym.) So the 5 questions should be as follows: is the first, second, 
etc., digit in the binary “codename” of that person a 1? If the answers, in 
order, are “no, yes, yes, yes, no”, then I was the one whom the professor 
had in mind. I was really surprised, since I had thought of myself as an expert 
in “Bar-kochba”. We used to play it a lot in the dormitory and I was con
sidered to be the best. (Recently I made quite an impression by figuring out 
“the hole dug by a worm in the apple which fell onto Newton s head .) Yet 
I would never have thought of asking the questions rapidly one after the other, 
without waiting for the answers.

Then our lecturer cited some more examples, such as, “how many bits of 
information are there in a passport number?” There are about 7.5 million 
adult citizens in Hungary with a passport. So the question was, if he should 
think of one of them, how many questions would be needed to figure out 
who that person was? We answered quite promptly. Since 222=4,194,304 
and 223=8,388,608, the number of questions should be 23. Then he asked 
if it would be correct to say that a passport number has exactly 23 bits of 
information. Some of us said that would be true only when the number of 
citizens reaches 8,388,608, whose base 2 logarithm is exactly 23. If there are 
only 7 and a half million passports right now, then the information in a passport 
number is a little bit less than 23 bits but certainly more than 22 bits. And 
together we concluded that it we modify the rules of Bar-kocnba so that 
one can think of only one of exactly N different things (such as a person, or 
an object etc.) then the information needed to figure the message out is log2 N.
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Now he suggested that we try to phrase this result without any reference to 
the game. After some experimentation, we ended up with the following: Let 
us consider an unknown x of which we know nothing except that it belongs to 
the set H having N elements. This information amounts to log2 N bit. This 
is called Hartley’s formula. He followed this by explaining the law of the 
additivity of information. This is again easier to understand through reference 
to “Bar-kochba”. Assume that we have to guess two things, let us say xx and 
x2, knowing only that xx belongs to the set Hx of Nx elements and that x2 
belongs to the set H2 of N2 elements. We can say that we have to guess the 
pair (xx,x2) which belongs to set H of all possible pairs (xl5x2), where 
xx is an arbitrary element of Hx, and x2 is an arbitrary element of H2 inde
pendently of xx. Obviously, the set H has Nx • N2 elements. Therefore the 
number of questions needed to guess the pair (xx, x2) (in other words the 
amount of information needed to determine (x1? x2)), according to Hartley’s 
formula is log2 (Nx • N2). On the other hand, we can guess xx and x2 sep
arately. We need log2 Nx questions to figure out xx and log2N2 for x2. 
Altogether, log2 iVx + log2 N2 questions will be necessary to guess xx and x2, 
which means that the necessary amount of information to find xx and x2 is 
(log2 iV!+log2 N2) bits. It looks as though we have two formulas for this 
information, but the two are equivalent (because of the well-known property 
of logarithm functions, that the logarithm of a product is equal to the sum of 
the logarithms of the factors of the product):

log2 NX'N2 = log2 Ari+log2 N2.

This is the law of additivity of information.
At the end of the lecture, we talked a little more about the concept of infor

mation. The professor warned us that since we can measure the quantity of 
information numerically, we can use the word “information” in two ways — 
one concrete, the other abstract, i.e., one denoting quality, the other quantity. 
By information we mean the concrete message (information) on the one hand 
and, on the other hand, its numerical value, i.e., the measure of the abstract 
amount of information contained in the concrete information, measured in 
bits. It is better to speak of only the concrete information as “information” 
and to call its numerical information content the “amount of information”. 
To avoid any misunderstanding, he said we would sometimes use the term 
“message” instead of “information”. It is also worthwhile to consider whether 
information (in the qualitative sense) has only one meaning for us. He asked 
us to write down on a piece of paper 10 words whose meaning is close to the 
meaning of “information”. I wrote down the following ten:
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1. notice 6. instruction
2. message
3. communication

7. enlightenment
8. knowledge

4. news
5. data

9. characterization
10. announcement.

The others gave some more variants of these words: telecommunication, com
munique, reference service, data transmission, notification, description, declara
tion, proclamation, statement.

We had to acknowledge that it would be pretty hard to define the concept 
of “information” formally, and that it was not necessary to obtain any cases 
because we all use the term thinking of essentially the same thing and, finally, 
that we will be defining the precise mathematical concept later on. Our lecturer 
emphasized again that we had still not reached a definition of this concept 
but only taken the first step toward it; the same first step taken by Hartley 
in 1928.

Finally, we solved a few problems to help us understand Hartley’s formula 
better. We considered, for example, the following question (which, as the 
professor said, belongs to an important chapter of information theory called 
search theory): we have 27 apparently identical gold coins. One of them is 
false and lighter (having been made of some other metal and then gold-plated), 
but it is visually indistinguishable from the others. We also have a balance 
with two pans, but without weights. Accordingly, any measurement will tell 
us if the loaded pans weigh the same or, if not, which weighs more. How 
many measurements are needed to find the false coin? Before solving the 
problem we were able to set a lower limit to the number of necessary weighings 
by establishing the following information: the false coin can be any of the 
27 coins, therefore the information needed to find it, according to Hartley’s 
formula, is log2 27.

Since every measurement can have one of three possible outcomes (the left 
side is heavier, the right side is heavier, the weights of the two are equal), 
each can give at most log2 3 information. If we complete x measurements, 
xlog23slog2 27 has to be satisfied. Since log2 27=3 log2 3 it follows that 
x^3, which means that at least 3 measurements are necessary. And we can 
certainly find the false coin with 3 measurements. First we put 9 coins into 
each pan. If one side rises, the false coin is among the 9 coins on that side; 
if the sides balance, then it is among the remaining 9 coins. Performing one 
measurement has decreased the possibilities to 9. Now choose two sets of three 
from that 9 and put them into the pans. The result of this second measure
ment will leave us with only 3 suspicious coins. Lastly, we put one of these 3
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on each side of the balance and whatever the result of the weighing, we will 
know which'is the false coin.

After the lecture, I had the feeling that I had understood everything I had 
heard. Now that I have gone through my notes, I see a lot of problems.

It is obvious that the answer to a question which can be answered with a 
“yes” or a “no” contains one unit, i.e., one bit of information. But what hap
pens in Bar-kochba when I ask poor questions and after the fifth cannot 
figure out something that should only require five. How could this happen? 
The answers to the five questions should have supplied me with 5 bits of 
information in total. Here I see an apparent contradiction. If 5 bits is enough 
to guess one of the 32 elements of a set, why is it that sometimes this informa
tion is not in fact enough? The amount of information cannot depend on 
how well I question. In other words: if I ask clumsily, I get less than 5 bits 
of information from the five answers — let’s say 3 bits. But the answers con
tain one bit each, so where then did those 2 bits disappear to? This question 
looked very mysterious at first but then I remembered what had happened 
the last time we played Bar-kochba and that helped me to solve this riddle. 
What had happened was that that night I was tired and preoccupied, and 
that was probably why, during the questioning, I asked a question which 
had been answered a minute before. “But you already asked that”, the other 
told me and suggested that I stay quiet if I was tired — and that was exactly 
what happened. I was a bit irritated at the time, but now this same event 
came to my assistance. I realized that the simplest way to question “unwisely” 
is to repeat a previous question. In such a case, of course, it is still true that 
both answers, the one to the first question and the one to the second (identical 
to the first) contain one bit of information, but the second bit is not new 
information.

So the two answers to the unskilled player’s questions contain not two but 
only one bit of information altogether.

Similarly, when one doesn’t exactly repeat a question, but asks inexact 
ones, one will not get the same information twice, yet only a part of the one 
bit of information obtained from the second answer will be new. The rest 
will already have been contained in the answer to the first question. This 
means that the 2 bits overlap. For example, if half of the 2 bits overlap, what 
we can get in total from the two answers is not 2, but only lx/2 bits of informa
tion. Assume that we have to guess one of the first 8 numbers. As a start, 
I ask if the number is one of 1, 2, 3, or 4. Then, whatever the answer, my 
second question is whether the number is among 1,5,6 and 7. The second 
answer will no doubt give new information but it will be less than one whole bit. 
It is accordingly possible because of this inappropriate question, that I will
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need four questions instead of the minimum three required. But if I try with 
the second question to locate the number among 1,2,5 and 6, then I will 
surely figure it out with the third.

Moreover, it is possible for me to guess the correct answer after hearing 
the answer to the second question using the incorrect method, while this 
would be impossible with the correct method of questioning, where I always 
need the third question! There is a haphazard element in the inexact method. 
My feeling is that, on the average, one loses using such a system, but I want 
to think about that some more later on. For the moment, I want to think 
about another problem, because I think I have to get it straight in my mind 
to understand the previous one clearly. What does a non-integer amount of 
information mean? The statement: to guess an arbitrary element of a set H 
having N elements, the information required is log2 N bits is clear if log2 N 
is an integer (i.e. N=2k, where k is a positive integer). We can certainly 
guess the unknown element with exactly k questions, but not less. But what 
is meant by log2 N questions when log2 N is not an integer? Somehow the 
lecturer didn’t touch on this point. Perhaps he will turn to it later, but I was 
bothered by it now.

I thought about this problem for a long time, and then I knew the solu
tion. My logic was this: to guess an element of a 7-element set one needs 3 
questions, and for a 9-element set, one needs 4. The Hartley formula states 
that the information required is log2 7=2.80735 bits and log2 9=3.16993 
respectively. But if I want to guess an xY element of a 7-element set H1 (for 
example, a particular day of the week) and an x2 element of a 9-element H2 
set simultaneously, then the number of questions needed is not 3 + 4=7 but 
only six, because there are 7 • 9=63 possible xl5 x2 pairs altogether, of which 
I have to find one and 63<64=26 (or log2 63 = log2 7+log2 9=5.97728<6). 
Now I was able to give a general answer to the following question: what does 
it mean, given an arbitrary number N which is not an integer power of 2, 
that to guess an arbitrary element of an ^-element set requires log2 N ques
tions (where log2 N now is not an integer!)? I reasoned this out as follows. 
If I need to guess an unknown element of an iV-element set not once but 
many times, let’s say k-times (for example, if I play Bar-kochba with k players 
each of them deciding on one element of the jV-element set independently 
and I have to guess these k elements), then I can ask questions regarding the 
unknown &-tuple (xx, x2, ..., xk) instead of questioning for k independent 
unknowns. Since, there are Nk different possibilities (i.e., /c-tuples), the num
ber of necessary questions can be calculated by taking the 2-based logarithm 
of Nk, and rounding it to the next integer. If this number of questions is denoted
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by Sk then
log2 Nk SkS log2 Nk+1.

Since logg Nk=k log2 N, we have

log2 N 5= < log2 7V+—.

Since Sk is the number of questions necessary to guess a set of k elements,

age. By choosing a large enough k, — can be made as small as we wish.
k

The above result means that to guess one element of an JV-element set 
(where N is not a power of 2), the number of questions necessary will be 
(if we play often enough) on the average, arbitrarily close to log2 N.

In this sense, it is true that the number of questions needed to guess one of 
a 7-element set is 2.80735. For example, in the case of N= 7, since 76= 
= 117,649<217, to guess six elements of this set simultaneously would require

17
17 questions while for one element, —=2.833 will be enough on the aver-

6
age.

I did some research on the Bar-kochba game to see who Bar-kochba was 
and why the game was named after him. In 135 B.C. the Jews started a war 
of independence against the Romans under the leadership of Bar Kochba 
(whose name means “Son of the Star”). The Romans, in superior numbers, laid 
siege to a fortress which was defended heroically by Bar Kochba at the head 
of a small garrison.

So far, this is historical fact. It is also said that Bar Kochba sent out to 
the Roman camp a scout who was captured and tortured, having his tongue 
cut out. He escaped from captivity and reported back to Bar Kochba, but 
being unable to talk, he couldn’t tell in words what he had seen. Bar Kochba 
accordingly asked him questions which he could answer by nodding or shaking 
his head. Thus he acquired from his mute scout the information he needed to 
defend the fortress.

The only problem with this very persuasive story is that no historical source- 
book mentions it. The legend was probably made up by the person who 
invented the game but I couldn’t trace who that was. It seems as though it 
came into being in Budapest at the beginning of this century. At any rate, 
the game was extremely popular in Budapest at that time, mostly among
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writers. Both Karinthy and Kosztolányi* mention it several times in their 
writings. They were masters of the game, along with István Szomaházy.

It occurred to me that, if the story of Bar Kochba were true, then he would 
have been the forefather of information theory. But there is probably no 
historical foundation to this legend. Still, it would be interesting to find out 
how long it has been known that all information can be expressed with yes-no 
answers (can be coded into a sequence of two symbols).

It seems to have been known for a long time, e.g., an old Indian legend 
points to this fact. Although information theory is a very young science, its 
antecedents go back far into the past. This is just another example of the 
thought at the beginning of Thomas Mann’s novel “Joseph and his brothers”: 
“Profoundly deep is the well of knowledge...”.

Second lecture

The professor actually started this time with the very point I had come to 
realize: he explained what Hartley’s formula expresses when log2 N is not an 
integer. Then he pointed out that up to this point, when we were speaking 
about guessing an unknown element of an A-element set, we were implicitly 
assuming all N elements to be equally probable. In reality, this is rarely the 
case. When we say £ is an unknown element of the set H={x1,x2, ...,xN}, 
this means that £ is a random variable with possible values xl5x2, ...,xN. 
Let us denotepk the probability that £ assumes the value xk (for k= 1,2, ..., N). 
In general, pi,p2, ...,pN are arbitrary positive numbers such that their sum 
is 1. When we find out which of the possible values £ takes, or, in other words, 
when we observe the random variable & this observation contains a certain 
amount of information H(g). To this point we have talked about how this 
information can be calculated if £ assumes all its possible values, i.e.,

xx, x2, ..., Xjy with equal probability p1=p2= •■■=Pn=j^-

In this special case, Hartley’s formula

#(f) = log,#

holds. In the general case, the so-called Shannon formula applies:

H(£) = a log---- \- p2 log-----1-... +/>jvlog —.
Pl P2 PN

Famous Hungarian writers in the 20th century.
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The meaning of H(g) in the general case is essentially the same as in the equi- 
probable caSe, with one small modification. In the language of the Bar-kochba 
game, H(£) can be interpreted as follows: if f denotes the entity to be guessed,
i.e., the Xi with probability px, the x2 with probability p2 and so on, up to the 
xN with probability pN of which the other player is thinking, then playing 
the game often enough and using the most effective method of questioning, 
on the average, one needs H(g) questions, or more precisely, the number of 
questions needed is arbitrarily close to H(g) with a probability arbitrarily 
close to 1. In contrast to Hartley’s special case, we now have to use the 
qualification “with a probability arbitrarily close to 1”, which is not needed in 
the symmetric case.

Using the concept of coding instead of the ‘game-language’, //(£) can be 
defined as follows: let £ be a random variable which assumes the values 
xx,x2,...,xN with probabilities px,p2, ...,pN, respectively. If we have inde
pendent observations of the value of £ and code them with 0-1 sequences, 
then it can be seen that, on the average, the amount of 0’s and l’s for the 
coding of one observation, with a probability arbitrarily close to 1, will be:

H(0 = pi log —+p2 log —+ ...+pN log—.
Pi P2 Pn

We verified this statement using the following example: two coins are flipped 
and £ denotes the number of heads. £ can therefore have 3 values, 0, 1 or 2,

with probabilities —, —, and —, respectively. We have to demonstrate

that after observing the value of £ in many experiments, the resulting sequence 
can be coded with 0’s and l’s in such a way that, on the average, the number 
of symbols required to code a result is arbitrarily close to:

~4 + Y log2 + ■4 1°&2 = 1.5,

with a probability arbitrarily close to 1. One way to do this is as follows: if 
one toss produces a result of one heads, i.e., if f = 1, we code it with a 1; if 
£=0 (i.e., if neither coin lands heads up), the result is coded as 00, and for 
£ = 2, we use 01.

This way, the observations can be coded using either one or two digits

depending on the value of f. Since £= 1 with probability 1
2’

the length

of any code word corresponding to one toss is a random variable rj which 
assumes 1 with probability — and 2 with probability -i and its expected
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value is 1.5=-^-* 1 + 1-y-2=1.5. Therefore, according to the law of large

numbers, with a sufficiently large number of experiments the average length 
of codewords will be less than 1.5 + 6 with a probability arbitrarily close to 
1, no matter how small the positive number e is. This coding process translated 
into ‘Bar-kochba language’ has the following meaning: if we have to guess 
how many heads the other player has tossed, first we should ask whether the 
result was one head. If the answer is ‘yes’, we have found out the answer 
with one question. If the answer is ‘no’, the second question should be whether 
the number of heads is two. No matter what the answer is, we will now know 
how many heads there are, because in case of a ‘yes’, the answer is 2, while 
for ‘no’, it is 0. One can now see why this is the best method of questioning. 
The question asked should, if possible, be one to which a ‘yes’ or a ‘no’ answer 
is equally probable. If there is no such question one must find one where the 
probabilities are as close to each other as possible. In this way, we can also 
see that the Shannon formula applies in the general case.

We then proceeded to investigate another example: a coin is tossed until 
the first time the outcome is the same as one of the previous ones, i.e., heads 
or tails again.

£ now denotes a whole sequence of observations. If the first two tosses are 
the same, then we can stop right away. On the other hand, if the first two 
are different then we are sure to have the desired situation after the third toss, 
which must of necessity have a result identical with either the first or second 
result. £ therefore can have the values HH, TT, HTH, HTT, THH and THT 
(where H stands for Head and T for Tail) and the probabilities of these events

are and — respectively, so
4 4 8 8 8 8

H(£) = 2 • — log2 4 + 4 —log2 8 — 2.5.

The appropriate coding in these examples is simply the substitution of 0 for 
H and 1 for T. The codewords (keeping the same order) for the above men
tioned values of £ are 00, 11, 010, Oil, 100, 101 and the expected length of a

codeword is —2-1-----3 = 2.5.
2 2

It follows from the law of large numbers that when £ is observed suffi
ciently often and the result is coded as above, the average number of symbols 
needed (each of which is a 0 or 1) in any one observation will be less (with 
probability arbitrarily close to one) than 2.5+6 for any arbitrarily small 
positive 6.
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In these two examples, it was easy to find the optimal method of coding
1

because px,p2, pN were powers with integer exponents of — permitting

us, at every step, to divide the still available possibilities into two classes of 
exactly equal probabilities. In the general case, this is not possible and it is 
more difficult to show the validity of the Shannon formula, although the 
essence of the proof remains the same, namely the law of large numbers.

Our lecturer gave us only the skeleton of the proof in the general case. He 
left it to us to fill out the details. The steps are as follows: if the random vari
able £ assumes the value xx,x2,...,xN with respective probabilities 
Pu Pa —9 Pn and we observe £ sufficiently often, — let’s say n times, in such 
a way that the observations are independent, then according to the well-known 
rule of probability theory that the probability of the joint occurrence of 
independent events is equal to the product of the probabilities of the individual 
events, the probability of an outcome having occurrences nx, of xx, n2 of 
x2,..., nN of xN is pi1 -p%---pnNN■ According to the law of large numbers, if

Ő and 6 are arbitrary small positive numbers and n is large enough, then —
n

will differ, (with a probability (1 — <5)) from px by less than e,...,— from 

p2 by less than s,... and — from pN by less than e, and the probability
n

given above will be approximately q=(px1,p%, ...,pnNN). Since the sum of the 
probabilities of all possible outcomes is 1, each value of t; (not counting the

infrequent case having probability less than <5) will be one of the — sequences
9

— number of l’s and 0’s to code these
q

and one will need approximately log2 

sequences. But

and so we proved that to code one outcome of £ with 0’s and l’s, the length 
of the needed codeword on the average is about H(£), with a probability 
arbitrarily close to 1. Next, we proved the validity of the Shannon formula in 
general. Obviously, the Shannon formula contains the Hartley formula as a
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special case, since if

Pi — Pz — ■ • • — Pn — jy

then

Pi log2—+p2 log2 — +... +pN log2 — = N 
Pi P2 Pn

1 . 1 
Nl0&

(v)
= log2 N.

We also proved that for a fixed N, px log2---- h...+pN log2— will be, for
Pi Pn

every distribution (px, ...,pN) other than a uniform one, less than log2N. 
This means that among the random variables that can have only N different 
values, the particular variable for which a given value will contain the most 
information is the one which assumes all of its values with equal probability.

The proof of this is as follows: as it is known that the curve y=log2 —
x

is convex from below, if we choose N arbitrary points on this curve and put 
positive masses on these points, the center of mass of these masses will always 
be above the curve, which means that

Pi l°g2~_+/72 l°g2------ f • • • +Pn l°g2 —
Pi P 2 Pn

— I°g2 \Pl----- f-•■•+Pn ) — l°g2 N.
V Px pNJ

At the end of the lecture, the professor told us that both Shannon and Wiener 
arrived at the formula

= Pi l°g2~—bpglogg---- h... ~\~Pn l°g2 —
Pi P 2 Pn

in 1948, independently of each other. Actually, this formula had already 
appeared in the work of Boltzmann, which is why it is also called the Boltz- 
mann-Shannon formula. Boltzmann arrived at this formula in connection 
with a completely different problem. Almost half a century before Shannon, 
he gave essentially the same formula to describe entropy in his investigations 
of statistical mechanics. He showed that if, in a gas containing a large number 
of molecules, the probabilities of the possible states of the individual mole
cules are Px, p2, Pn> then the entropy of the system is H=c[px log —+

1 1 1 Pl
+p2 log---- ...+pN log — , where c is a constant. (In statistical mechanics

P 2 Pn'
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the natural logarithm is used and not the base 2, but this doesn’t matter 
since the two are equal to a constant factor.) The entropy of a physical system 
is the measure of its disorder. One can also think of it as a quantity charac
terizing the uncertainty of the state of the molecules in that system.

Given this interpretation, we can easily see why Boltzmann arrived at the 
same formula for entropy as Shannon and Wiener did for information.

After some thought, one can see that uncertainty is nothing but a lack of 
information, i.e., negative information. In other words, information is the 
decrease of uncertainty. Before we observe a value of £, we are uncertain 
about which of its possible values £ is going to have. After the observation of 
£, this uncertainty is removed. Now we know that this observation contains 
//(£) bits of information. This information removes the uncertainty about the 
value of £ which existed before the observation, therefore, it is reasonable to 
choose the number H(£) for the measure of uncertainty. //(£) can then be 
looked upon as the measure of the uncertainty which exists with respect to the 
value of £ before it is determined. The measure of uncertainty is called entropy. 
The Shannon formula can accordingly also be interpreted as follows: if the 
random variable £ assumes values xx, x2, ..., xN with respective probabilities 
PijPi> then the entropy of £ denoted by H(£), can be calculated by

N 1
the formula H{£)= 2 Pk log —.

k=i pk
At this point, we asked the professor why entropy and information are 

denoted by the letter H. He answered that it was Boltzmann himself who had 
introduced this notation and after that, it became customary. He also pointed 
out that the entropy H(g) of a random variable £ (or the amount of informa
tion contained in the observation of £ which amounts to the same thing) is 
independent of the values of f, i.e., xx, x2, ..., xN (about which it is enough 
to know that they are different numbers) but depends on the probabilities 
—Pi’Pz, — with which £ assumes these values. If /(x) is a function such 
that its values are different at the arguments xx, x2, ..., xN, then the entropy 
of the random variable /(£) is the same as the entropy of £, H[f(£)] = H(i;). 
We also proved by an application of the convexity of the function x log2 x, 
that if the values of /(x) at xl5 x2,..., xN are not all different, then #[/(£)]< 
<//(£) which means that the uncertainty regarding the value of /(£) is less 
than that of £.

We then extended the law of additivity of information to the general case. 
This law can be stated in relation to the general case as follows: if £ and rj 
are independent random variables, then the information content of the simul
taneous observation of £ and rj, denoted by //((£, rj)) is equal to the sum of 
the information contained in the individual observations of £ and rj, i.e.,
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H{{L^))=H{0+H{r]). This relation follows from the basic laws of loga
rithms. To give this in more detail, if £ can have the value xk (k= 1, 2,N) 
with probability pk and rj can have the value y} (j= 1, 2, M) with prob
ability qj, then the pair (£, r\) of variables will assume the value (xk,yj) 
with probability pkqj. Using this fact and also 2 Pk=2 Qj= 1» we have:

N M 1 N M ( 1 1 \
#((£>*/))= 2 2Pk<ij^g2—— = 2 2PkQj [log2—+iog2— =

k=lj=l PkQj k = l j = l \ Pk Qj>
M ( N 1\ N ( M 1\

= {2qj)\2 Pk\ °g2—I+(2Pk)\2 <ij log2—I =
j = 1 H=1 Pk' fc=l V=1 Qj'

= Jy(0+J5T(iy).
If I wanted to be malicious I’d say that what we learned in the second lecture 
was that nothing of what we had learned in the first was true. Of course, this 
is not correct; we were only giving greater precision to what we had formulated 
inexactly on the first occasion. It seems to me that the professor’s method is 
to explain the difficult notions in several stages. In his first approximation, he 
neglects certain things of secondary importance in order to put more emphasis 
on the essence of the matter; later, he patches up what was not very precise. 
This method of introducing a new concept is similar to the way a sculptor 
carves a statue out of a piece of marble or wood. First, he cuts out just the 
outline and later he comes back to the finer details. Although it is unusual, 
there are certain advantages to this method, the main one being that it forces 
one to do independent critical thinking. The usual system of taking notes 
doesn’t work with this kind of teaching, since the notes taken at earlier 
lectures have to be corrected after the later ones. If I used the usual note
taking procedure (writing down only the definitions, theorems and their proofs) 
it would cause me difficulties; so I have another reason to be glad that I decided 
on this diary-form of lecture-notes.

Let’s have a closer look at what needs to be corrected in what was heard 
at the first lecture. First of all, the statement that every “yes” or “no” answer 
(or signal which can have only two values, let’s say 0 and 1) always contains 
1 bit of information. According to what we heard at the second lecture, this 
should be modified to state that such a signal contains 1 bit of information 
only if the two possible values are equally probable — i.e., both have prob

ability í_
2

— otherwise, its information-content is less than 1 bit. To put this

more precisely: if, for example, we ask a question in the Bar-kochba game 
to which the “yes” answer has probability p and therefore the “no” has prob
ability (1— p), then according to the Shannon formula the answer contains
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h(p)=P log2 —+ (1 —p) log2---- —— bit information. I have drawn the h(p)
P (l-/>)

function (Fig. 1). The curve reaches the value 1 at /?= — only; elsewhere, it is less 

than 1 and is symmetrical to the vertical line drawn through P=~^- This latter 

fact can also be seen from the formula, since h(p)=h(l—p), so h +xj =
”* (4~*)'if O^xS—. This should hold because there cannot be any 

2
difference whether it is the yes or the no answer to a certain question that has 
probability p. If, for example, somebody throws a die and I ask him “Did

you get a 6?”, then, since the probability of a “yes” answer is —, the answer

to my question contains h f_) — _ logg 6 + — logg —= 0.65 bit of informá
ló/ 6 6 5

tion, which is less than 1 bit.
Or, to go back to the lecturer’s joke, if I ask a girl whether she wants to 

marry me, the information content of the answer depends on the probability 
with which she will say yes. If this probability is very small or else very close 
to one, then the answer will not contain too much information — I will hear 
what I know almost with certainty. When I got to this point, it suddenly 
became clear what the lecturer meant by remarking that if £ assumes its 
possible values with different probabilities, then in trying to guess its actual 
value, one should ask each question so that a “yes” answer has a probability

as close to — as possible. In this way, one can get the greatest amount of

information out of each answer. He could have told us this, but he wanted 
us to realize it for ourselves. I can even calculate how much information I get
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when I ask questions clumsily. If I have to guess one of the first eight natural 

numbers, all of them being equiprobable with probability —, and if I ask 

first whether the number is one of 1, 2, 3, 4, then I will get 1 bit of informa

tion, since the probability of a “yes” answer to this is —. If, as a second

question I ask whether the number is one of 1, 5, 6, 7, then having a “yes” 
answer to the first question will make the probability of a “yes” to

the second one — (conditional). If the answer to the first question was

3
“no”, then I will get a yes answer, with (conditional) probability —. In both 

cases, the second answer contains only j = 0.83653 of a bit of new infor

mation as 0.16347 of a bit was already known. There is only 0.83653 of a 
bit of information that is new out of its 1 bit of information content.

Having learnt this, I returned to the false coin problem. I realized that it is 
possible to determine the false coin (which is lighter than the other 26) with 
3 measurements only because the measurements can be chosen in such a way 
that their outcomes have equal probabilities. If the measurements have 3 
possible outcomes but not with equal probabilities, then one measurement 
supplies less than log2 3 of a bit of information. Let’s say there are 25 coins, 
one of them being false. With 8-8 coins put in the two pans of the scales,

8 8 9the probabilities of the three outcomes are —, —, — and by the Shannon 
F 25 25 25

8 25 9 25
formula, the experiment will contain 2-----log,------1-----log, — = 1.58269

25 8 25 9
bits of information instead of log2 3= 1.58496 bits.

I thought a lot about what it means that information can be interpreted 
as a decrease of uncertainty. It is true that when a guessing game starts, I am 
in complete uncertainty as to what I’m going to guess. As the game progresses, 
this uncertainty decreases with the answers to my questions and it disappears 
when I have guessed correctly. If this uncertainty was B bits at the beginning, 
then after receiving x bits of information, by definition, there are still B—x 
bits of uncertainty.

Therefore at any given time during the game, the sum of the existing uncer
tainty and the information so far collected are constant, since x+(B—x)=B. 
This relation looked very familiar; I knew I had already met with it. After 
some thought, I realized how similar it is to the constant sum of the kinetic 
and potential energies during free fall.
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When a brick lies on a roof it has only potential energy, and no kinetic 
energy. When it starts to fall, its kinetic energy increases and the potential 
energy decreases, so that the sum of the two during the fall is constant. This 
analogy reveals a very exciting problem: — it seems there is some similarity 
or analogy between the concepts of information and energy. Moreover, it looks 
as though there exists a law which can be called the law of conservation of 
information. This connection can be stated in another way, too: in Bar- 
kochba, the sum of the information already received and that which is still 
missing is constant. I decided to ask the lecturer at the next class if hypothesis 
of a parallel between the concepts of information and energy is correct.

I see yet another similarity: between energy-conversion (for example, elec
trical energy into mechanical energy, etc.) and information coding. The TV 
transmitter codes the information in a picture into information in electro
magnetic waves; the TV receiver converts this information into a picture again. 
This process reminds me very much of the conversion of mechanical energy 
into electrical (in a generator) and after the transmission, another conversion 
into mechanical energy in an electric motor. I have the feeling that there is 
a basic relation between energy and information: I am very eager to follow 
this up.

Third lecture

The first idea we looked at today was that of conditional entropy (or informa
tion). If B is an arbitrary event of positive probability, f is a random variable 
having xlt..., xN possible values (all being distinct), and Ak is the event that 
tk assumes the value xk (&=1,2, ...,#), then the conditional entropy of £, 
given condition B, is defined as the entropy of £’s conditional distribution 
given B, i.e.,

(1) HÁi) = 2HAkm lo&OTy

where P{Ak\B) is the conditional probability of event Ak given B, P(Ak\B)=
P{AkB)
f(4) ' where AkB denotes the event that Ak and B happen together.

If we now take another random variable rj, which can assume the values 
Ti, •••>Tm and B} denotes the event r\=y} (j= 1,2, ..., Af), then the con
ditional entropy of £ given a certain rj, denoted by Hn(g), is defined as the 
expected value of HB (£):

(2)
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Let us consider how much the entropy of £, decreases uncertainty about the 
value of £, by observing ij. This quantity, which we will denote by 1(1;, rj), 
can be considered as the amount of information concerning £ by observing rj. 
Therefore, by definition:

(3) /«, n) = H(0-ffn(0 = 2 f(A) log* -

-ZZHABj)

Since 2 p(ABj)=p(Ak) (which is true because the events AkBk, ...,AkBn

are mutually exclusive, and if Ak occurs, then only one of events AkBj can 
occur), it follows that:
(4) /(£, rj) = 22 p(A Bj) log2 p^)T(b]) '

We reached the following conclusions about /(£, r\).
a) /(<!;, r]) is always non-negative and is zero only if ä, and r\ are independent.

^This follows from the convexity of the function log2 —j. If c and t] are

independent, then the observation of rj will not supply any information con
cerning £. If they are not independent, then the observation of rj will contain 
some information about £, too. The professor joked that from this we can 
conclude that whatever we learn at the University, we can only end up smarter 
and not stupider since in the worst case, it will only be a zero amount of infor
mation that we get out of our studies.

b) /(£, r\)=iH(£) where the equality sign holds if and only if €=/(%), i.e. 
if the value of rj determines the value of £ uniquely, when we can get the exact 
value, i.e., full information of £ by observing rj (which will dissolve the H(£) 
uncertainty about ^ completely). In particular, this is the case when
i.e., %<:)=*(<:).

c) /(£, rj)=I(rj, f), meaning that the observation of rj gives as much infor
mation about £ as the observation of £ about rj. That is why is usually
called the relative information of £ and rj.

The lecturer made a very interesting theoretical comment about this last 
characteristic. He said that the deep cause of the equality of /(£, r])=I(rj, £) 
is as follows: if we investigate two entities that are random and to a certain 
extent dependent on each other, then we cannot by using information theory 
deduce which of the two is the cause and which is the effect in their relation
ship. The only thing that can be established is how close their dependence is. 
Let’s denote the water-level of the river Danube in Budapest on any day of
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the year by rj and the amount of precipitation during the previous week in 
Bavaria by Obviously, although £ and y\ are random, there is some con
nection between the two, namely, that if there is a lot of rain in Bavaria, the 
water-level of the Danube will rise in Budapest. This dependence is a causal 
one, because it is the rain in Bavaria that causes the elevation of the water- 
level of the Danube in Budapest and not vice-versa. Although this is not a 
deterministic relationship because there are several other parameters on which 
the water-level of the Danube depends (such as the amount of rain in Austria, 
Slovakia, the Transdanubia, etc.), still, there is a definite dependence. Therefore 
the observation of £ gives some information about r\ and vice versa, but since 
the information content of the two are equal, we cannot conclude anything 
about the causal relationship between £ and rj.

The lecturer suggested that those who are not afraid of complex calcula
tions try the following problem: assume that we take an «-element sample 
from a conveyor-belt carrying N parts at a time. Let £ denote the percentage 
of faulty items among all of the parts and rj denote the percentage of faulty 
parts in the sample. Let us see how much information about £ is obtained by 
observing rj. By calculating this information, we will be able to establish some 
guidelines on how large a sample needs to be to provide sufficient information 
about the percentage of faulty elements on the whole.

In class we calculated the answer to the following problem: there are two 
urns, one of which has a red and b white balls, and the other b red and a 
white. The two urns are exactly the same: by looking at them one cannot tell 
them apart. Let’s choose one of the urns and take a ball from it. Let £=1 or 
£=2 if we choose the first or the second urn, respectively. Let rj=l if the 
ball is red and r\=2 if it is white. Calculate /(£, rj), i.e., determine the amount 
of information supplied by the color of the chosen ball about which urn it 
came from. Let A± denote the event when £= 1 and A2 that when £ = 2; 
similarly, let Bx denote the event when rj= 1 and B2 that when rj=2. Then:

HA) = P(AiI = P(B,) = P(Bt) = J,

fWiA) = = a
2(a + 6) '

P(Ai 52) — P(AM —
b

2(a + h)

Í—l a + b

and so,
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Therefore if, fc -j — 0.16347,

/(£, rj)=0, and £ and rj are independent.) The result, in other words, is that 
the desired bit of information concerning £ is approached (by the observation

1
2

of w) better when------ is farther from

Then the lecturer discussed another way to get at the concept of entropy 
or relative information. Let us associate with every event a number V(A) 
which represents the unexpectedness of event A. We assume V{A) to have the 
following characteristics.

1. V(A) depends only on the probability of event A; it is a function of

V(A) =f[P(A)l

when f{x) is a monotone decreasing function (meaning that the more improb
able an event is, the greater the unexpectedness of its occurrence).

2. If events A and B are independent, then the unexpectedness of their 
simultaneous occurrence is equal to the sum of their individual unexpectedness. 
Denoting by AB the event that A and B occur simultaneously, we have:

V(AB) = V(A)+V(B).(6)

3. We choose, as the unit of unexpectedness, the unexpectedness of an

These three assumptions hold if

(8)

It can readily be seen (using the property of the logarithm-function — as a 
monotone function — that the logarithm of a product is equal to the sum of 
the logarithms of the factors) that no other function can satisfy the above 
three assumptions. The unexpectedness V(A) of a random event A is defined 
by (8).

We can now define the entropy of a random variable (having only countable 
many values) as the expected value of the unexpectedness of the value assumed 
by the variable. If the random variable £ has the possible values xlt x2,..., xN
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with probabilities p±,p2, ...,pN, respectively, Ak denotes the event that £

assumes the value xk (k= 1, 2,N). The unexpectedness of Ak is log2 —
Pk

and the probability of Ak is pk, therefore the entropy of £ is

(9) — Pi l°g2~‘+JP2l°gi ——b • • • T Pn log2 — . 
P 2 /N

We have arrived at the Shannon formula again, but in a different way. This 
way also brings us to the concept of relative information.

Let A and B be arbitrary event relating to the same experiment. If we observe 
the outcome of event B, this will change the unexpectedness of event A.

The unexpectedness of A was originally log. . After the observa-

tion of B, the probability of A has changed to the conditional probability
P(A\B) = -■ j ^ and its (conditional) unexpectedness will be logo--- ?—.

F(B) P(A\B)
Let V(A, B) denote the change in the unexpectedness of A resulting from the 
observation of B, then

(10) V(A, B) = log.

P(AB) 
f(/f)f(4) '

V(A, B) is positive if P(AB)>P(A)P(B); it is negative if P(AB)<P(A)P(B), 
and it is 0 if P(AB)=P(A)P(B), i.e., when A and B are independent. If A 
and B are independent, then the observation of B will not change the unex
pectedness of A, while in the case where is dependence, the observation of B 
will decrease or increase the unexpectedness of A depending on which of 
P(AB) and P(A)P(B) is greater.

Now, let £ and r] be two random variables; let ^ have possible values 
xi* x2, •••) xn aRd *1 have possible values , y2, Let Ak be the event
where £ = xk(k= 1, 2,..., N) and B} be the event where r]=yj (/= 1, 2,..., M). 
We want to see by how much, on the average, the value of the unexpectedness 
of £ will change with the observation of rj. In other words, we want to cal
culate the expected value of V(Ak, Bj). We obtain:

The result, then, is the following: the relative information can be
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defined as the expected change in the unexpectedness of £ brought about by 
the observation of rj. The two definitions of /(£, rj) are equivalent, and this 
can be expressed by stating that the decrease in the uncertainty of a given 
random variable £ by the observation of a random variable rj is equal to the 
expected change in the unexpectedness of the value of £ resulting from the 
observation of rj.

After the lecture, I asked the lecturer if my conclusion about the analogy 
between the notions of information and energy was correct. He was very 
pleased with my question and indicated that the parallel was correct. He 
also said that he had wanted to talk about this analogy himself, but now that 
I discovered it, it would be better for me to prepare a talk on it. He promised 
to give me the necessary bibliography on this question at the next lecture. 
So my question back-fired but I don’t really mind. The problem is that much 
on my mind, although it is not a mathematical question but a philosophical 
one. I have always been interested in philosophical problems relating to mathe
matics.

Today’s lecture made me think of the difference and the similarity between 
the concepts of uncertainty and unexpectedness. In my opinion, the lecturer 
passed over the underlying logical difficulties much too quickly, possibly 
because he had gotten so used to these ideas, he could not see what diffi
culties they can cause a beginner. It was difficult enough but I think I have 
it clear now. To begin with, one should realize that these two words refer 
to two different things: a random event has unexpectedness, while a random 
variable has uncertainty. The difference can best be shown by investigating 
an arbitrary random event A together with the random variable a, the values 
of which depend only on whether A will happen or not. Let’s say a= 1 if 
A occurs and a=0 if it doesn’t. (In other words, the random variable a is 
the indicator of the event A.) Let the probability of A be P(A)=p. The unex

pectedness of the event A is V(A)=v(p)=log2—, while the uncertainty 

(entropy) of the indicator a of the recent A is h(p)=p log2 —h (1 —p) log2-j——

(Fig. 2). From Fig. 2 itcan be seen that the h(p) and v(p) functions are equal for 

only two p values: if p=y, then h(p)=v(p)= 1 and if p= 1, then h(p)=

= v(p)z= 0. If p approaches zero h{p) goes to zero while v(p) increases with
out limit. More light can be shed on this by arriving at the following relation
ship: h(p)=pv(p)+(l-p)v(\-p), which means that the uncertainty con
cerning a is a weighted (by the probabilities of the corresponding events) 
average of the unexpectedness of the events A and A (i.e., events a=l and
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a=0). The uncertainty of a is greatest when /?=—, while the unexpected

ness of the event A is greater and greater as p is smaller and smaller.
Let us compare the decrease in uncertainty with a change in unexpected

ness. The situation is like this: With the observation of a random variable, 
the uncertainty (entropy) relating to another random variable will always 
decrease, or stay as it is —the latter result occurring in the case of two inde
pendent random variables. On the other hand, with the observation of an 
event, the unexpectedness of another event can decrease, increase or stay 
the same — the last possibility again occurring in the case of independent 
events. A decrease in uncertainty can always be interpreted as information. 
A change of unexpectedness is not information; only its expected value can be 
taken for information (because the expected value of the unexpectedness is 
equal to the decrease of uncertainty).

I also thought about what the “dimension" of unexpectedness might be, 
in other words, if it can be expressed in bits. The way I see it, this is possible, 
from a purely mathematical point of view, but it would be improper because 
it would mean treating the change in unexpectedness as an amount of informa
tion, which it obviously is not! (One can see that the identification of a change 
in unexpectedness with information is incorrect by realizing that it would
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mean that, in certain cases, an observation would provide negative informa
tion — and this is obviously absurd.) It would be possible to measure unex
pectedness in some new kind of unit and give it a name too, but there is no 
need for all that. Unexpectedness doesn’t need “dimension”, it is enough to 
make it a dimensionless number.

And I thought about the lecturer’s joke too, that from /(£, 77)=0, it fol
lows that no matter what we learn at the University it cannot harm us since 
in the worst case, it will simply be of no use. Of course, one can say that one 
will get smarter by studying and thinking, but simple memorizing makes the 
mind dull, so I can’t say that preparing for exams doesn’t destroy one’s intel
lectual capacities. There has been a lot of talk lately about the need to decrease 
the number of exams. I really don’t think that the problem is their number, 
but much more the way they are conducted. We need the kind of exam where 
the requirement is not to regurgitate what we have desperately tried to jam 
into our brains in the previous couple of days, which will be mostly forgotten 
during the preparation for the next exam. Rather, we need the kind of exam 
which will allow us to show our understanding of the material and to dem
onstrate our thinking abilities. Of course, I have no detailed idea of the how 
and what of such an exam — it is possible that it’s just an impossible dream 
of mine. Or is it possible that information theory can help to answer this 
question? Because it is information that this is all about; the examiner must 
get information about how much information the student has accumulated on 
the given subject.

Once, when we were discussing the exam timetable with the professor, he 
remarked that he considered our way of thinking about education at the 
University to be too “exam-centered” and that he disagreed with such thinking. 
He told us a story about Niels Henrik Abel, the great Norwegian mathe
matician, who as a young student went to Berlin to pursue his studies. He 
knew hardly any German at the time, so when he reported to Professor Grelle, 
he said only a few words and gave Grelle the letters of recommendation from 
his teachers in Oslo. Grelle assumed that Abel wanted some information 
about the exams, so he explained at length when and in what subjects he 
would have to take them. After a while, Abel, who already had with him in 
his briefcase at that time more than one paper containing quite important new 
findings, interrupted Grelle and said to him in broken German: “Nee, Herr 
Professor, nix Examen, nur Mathematik!” Our professor said that he missed 
that kind of spirit in today’s students. One had to admit he had a point. Most 
students are exam-centric. But I doubt that students alone are to blame. The 
root of the problem lies in the present educational system — the exam-cen- 
tricity originates with the university, we are just influenced by it. Whenever
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an evaluation is made of the work of individual students, or of various groups of 
students, for instance, for the purpose of selecting those who will receive schol
arships or grants, the only criterion used in the evaluation seems to be the 
exam grades of those involved.

This is what needs to be changed. As far as students in Mathematics are 
concerned, one solution could be to have them give seminars, do assignments, 
write papers and have them evaluated on such work. It would seem possible 
to put such a system into effect quite easily for mathematicians; of course, 
I don’t know that much about the situation in other Faculties. But why should 
the procedure be the same everywhere, in all Faculties of the University? This 
mechanical uniformity or the tendency towards it is one of the main problems. 
Since the problems manifest themselves differently from Faculty to Faculty the 
solutions should be different, too.

Can the difficulty of an exam be measured by how many bits of informa
tion a student would need to pass it? This may not be so absurd in the encyclo
pedic subjects but in mathematics it doesn’t make any sense since things follow 
from each other and, in principle, whoever knows the bases knows everything. 
All of the results of a mathematical theorem are in the axioms of mathemat
ics in embryonic form, aren’t they? I will have to think this over some more.

Returning to the inequality /(£, rj)^ 0 and the lecturer’s remark about the 
effects of our studies, made me aware that he knows how much we have 
argued among ourselves over the past few weeks as to whether we would really 
learn what we need most in our work after our graduation. Many of us had 
definite doubts about this. But they couldn’t agree on which subjects were 
unnecessary because each of them thought that those in which he had an 
interest and which he studied with pleasure were the important ones. Those 
which were considered unnecessary turned out to be those that a given indi
vidual wasn’t too interested in or those in which he had difficulties — there
fore almost all subjects had their defenders and attackers. Theoretically I didn’t 
agree with all this criticism, since I considered even its starting point faulty. 
I am quite aware of the kind of jobs taken by graduates in the recent years, 
and I see clearly that there will be as many kinds of jobs as there are graduates. 
So it is impossible to figure out what specialized knowledge one will need. 
We have to face the fact that we won’t learn everything we need later in our 
work at the University: we will have to supplement our knowledge with inde
pendent study. And therefore we should consider the subjects in our curriculum 
from the viewpoint of how much help they will provide for those further 
independent studies. In that respect, it is not only the subject itself that will 
be useful to us but also the rational method that will be learned and the ability 
to think that will be acquired. Now then, it is impossible for us to know
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beforehand how much help the abilities we develop will be in the study of a 
given subject of which we know nothing more at the moment than its name. 
Therefore, our arguments about the curriculum are pointless. My opinion was 
at first very unpopular among my classmates: they argued that it was wrong 
for me to disclaim the right of university students to seek to influence the cur
riculum since the trend in universities these days is very much toward a policy 
of restriction in any case.

My answer to that was that I don’t want to disclaim our rights. I merely 
suggest that we voice our opinions only on those issues about which we are 
qualified to give opinions. For example, it is a fact that we can judge best 
whether it is worthwhile to go to a certain class, or if a tutoring session is 
useful or not, because we can see if these help us in our studies or not. And we 
can clearly see if an examiner is unjust in his marking. But we lack the nec
essary overview to talk about the curriculum.

I guess when we got into an argument about the teaching of physics, my 
classmates finally understood my point of view and that I don’t want to give 
up our right to critize the quality of teaching if necessary. What happened 
was that I was the one who criticized the present situation most strongly, prob
ably because I am very much interested in physics. As well as indicating what 
mathematics majors dislike in the present method of teaching physics, I also 
described how I thought it should be taught. While realizing — rightly — that 
the system is basically useless in its present form, most of my colleagues had 
never even given a thought to the possibility that there might be other ways 
of teaching physics. Their conclusion was that physics should not be taught 
to mathematics students at all or at most only in limited amounts. They even 
philosophized that while physics had been historically the main area in which 
mathematical methods had been applied, the center of application had now 
shifted to economics. Although there is some truth to this argument, the 
reasoning is not correct. It is still true that physics is the main field of applica
tion of mathematics. This is true not only of traditional areas of mathematics 
but even of many new ones (such as functional analysis, group theory, com
plex functions of one or several variables, distribution theory, etc.). As a 
matter of fact, physics still constitutes the major inspiration for new develop
ments in mathematics. So, in my view, the number of lectures on physics for 
mathematics students is by no means too great, but a different approach is 
needed. At present, our physics lectures are the same as those for the physics 
students and that is not appropriate. We need physics courses where the main 
stress is on the use of mathematical methods. One way to accomplish this, in 
my opinion, would be to have the lectures given not by physicists but by mathe
maticians knowledgeable concerning the applications of mathematics in physics.
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This would answer our main complaint in this area namely that the lecturers 
in physics usually treat the question of mathematical precision quite off
handedly. They claim that the scientific insight will prevent us from reaching 
false conclusions, merely because of a lack of precision in the mathematics 
used. Of course, this is not at all soothing to us, since we are interested in the 
application of mathematics to physics! Recently I got into a real argument 
with one of the instructors in physics when I mentioned to him — in connec
tion with his lack of mathematical precision — what we had learned in mathe
matical logic, namely that from one false statement any other true or false 
statement can be derived. And since he had written down an obviously false 
equation, he didn’t need to bother doing anything more, since anything could 
be deduced from it.

Returning to what we had discussed in the information theory class, I thought 
some more about the /(£, rj)=I(ri, £) connection and the direction of cause- 
effect relations. My impression is that our lecturer simplified the question a 
bit. From /(£, t])=I(r], £), it doesn’t follow that /(£, *7) gives information 
only about the strength and not about the quality of the connection between 
<j; and rj. Toss one coin twice and denote the result by £. The possible values 
of £ are HH, HT, TH, TT, where H stands for heads and T for tails. Let 
77 = 0 if the results of both tosses are the same (both are either heads or tails), 
and let rj= 1 if the results are different (one is a head, the other is a tail). 
In this case, the value of £ uniquely determines the value of rj but the reverse 
is not true. Therefore, I(£,ti)=H(rj)=l while /(£, 77) 5^//(£)=2. Although 
it is still true that £), one can see even from the amounts of
information alone that the value of £ determines the value of r\ but that the 
value of 77 doesn’t determine the value of £ [since I(^,rj)=H(ri) but /(??,

In this example, the direction of the connection between £ and 77 is 
evident and therefore the connection can be looked upon as causal (i.e., £ is 
the cause, 77 is the effect). Now if neither £ nor 77 is a function of the other, 
then the situation is more complicated, but I surmise by this example that 
one can derive something this way even in the general case. Again, I guess 
I will have to ask the professor, although it is possible that he himself will 
return to this question to make his observations more precise, as he has already 
done.



34 ON THE MATHEMATICAL NOTION OF INFORMATION

Fourth lecture

Today we analyzed mutual information further. One can see easily that 

(1) =

From (1) and from the fact that mutual information is a non-negative entity, 
it follows that if £ and q are random variables, then

(2) H{(£, t])) ^ H(0+H(ri),

with equality if and only if £ and % are independent. (1) can be written in the 
form:

dO H((i, r,)) = v) =

(V) may be looked upon as the generalization of the law of additivity of 
information so that, if f and rj are two arbitrary random variables, then, 
observing the value of £ and tj, we can get the information contained in these 
two observations if we add the information contained in the observation of rj 
to the conditional information contained in an observation given a particular 
value of £. In other words, //((£, %)) can be obtained by subtracting from 
the sum of H(£) and H(rj) the amount of information which is in it twice, 
namely To make this is clear with an example: let a, ß, y be inde
pendent signs, each one of which can have the values 0 or 1 with probability

—. Denote as £ the (a, ß) pair and as rj the (ß, y) pair. Obviously, a, ß

and y contain 1 bit of information each, and £ and t] contain two bits each, 
while the observation of the pair (£, t]) is equivalent to the observation of a, ß, 
y (ß twice but that is unimportant for the present) and so //((£, rj))=0. Finally, 
/(£, n)= 1 since if we observe the outcome of £, then we know what values 
a and ß have assumed, of which a gives no information about the independent 
rj, while ß supplies 1 bit (knowing ß from the rj=(ß, y) pair, it is only y which 
remains unknown). Since 3=2+2-1-2+1, therefore, in this case, (T) 
holds.

We then began to examine another area of information theory, the informa
tion theoretical distance of two distributions.

Let
P = {Pi,P2, —,Pn) and Q = {qXi q2, ..., qN} 

be probability distributions consisting of the same number of positive ele-
N N

ments (i.e. 2! Pk= 2 íh= 1), then the information theoretical distance ofk—l k=l
distribution P from distribution Q, denoted by D(P, Q) is defined by the
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following formula:

(3) D(P, Q) = Jft log2-^
fc=i Qk

1
Because log2 — is convex, it follows that JD(P, Q) is always non-negative 

x
and equal to zero only if the P and Q distributions are the same. If they are 
not, then among the terms on the right-hand side of equation (3) there are 
necessarily some which are positive and some which are negative, but as we 
have seen, the sum is always positive! D(P, Q) can be written as

d(p* Q) — 2 Pk |i°gi l(30

and then we can interpret D(P, Q) in the following way. Let the events 
Alf A2,..., An be the possible mutually exclusive outcomes of an experiment. 
Assume that distribution Q consists of the probabilities of these outcomes, i.e., 
qk=P(Ak) (k= 1,2,..., N), while P consists of the probabilities of the out
comes of the same experiment under different circumstances. Then

(log2 ——logg—1 denotes the change in the unexpectedness of Ak which is 
" <lk pj

due to the different experimental circumstances, D(P, Q) is equal to the 
expected value of this change. When the expected value is calculated, we 
should use the probabilities corresponding to the changed conditions, i.e., we 
should weigh with the pk s (and not with the old probabilities, the qk s) the
ilogg------logg —) amount. With the help of the D(P,Q) distance, the
v qk Pk>
information H{£) and /(£, rj) can be expressed as follows. Denote by P the 
probability distribution of the random variable £; then if ^ assumes the value 
xk with probability pk, let P= {pi,p2, •••,Pn}• Denote by Q the AT-element

uniform distribution, i.e., let Q=\—, —^ l N N —Then
N)

#(f) = log:Ar-D(f,0.(4)
(4) shows the already well-known fact that H(£)^ log2 N.

Now let £ and rj be arbitrary random variables. Let £, q have as possible 
values xk, x2, ..., xN and ylyy2, respectively. Denote by Ak the event
£=xk (k= 1,2,..., N) and by Bj the event rj=yj {j—1,2, Denote
by R= {P(AkBj)} the point distribution of the random variables £ and q, 
and by P*Q the probability distribution {P{A1)P{BJ)}. P*Q is therefore 
the joint probability distribution of such two random variables ^ and of
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which the distribution of is equal to the distribution of £, and that of ^ to 
f/’s; moreover, and ^ are independent (as opposed to £ and rj, which are 
generally not independent). Then

(5) I(£, rj) = D(R, P*Q).

In other words, the mutual information /(£, rj) is equal to the information 
theoretical distance between the R distribution and the P*Q distribution.

Next, we turned to codes with variable length codewords. Let ^ be a signal 
(i.e., a random variable) with possible values xx, ..., xN having probabilities 
Pi,p2, ■••■»Ph, respectively. First we looked at the simplest case, that of the 
so-called binary codes in which only the binary digits 0 and 1 are employed. 
Let us code the , x2, ...,xN values with different sequences of 0’s and l’s 
(where we allow the length of the sequences to vary). Such a code is called a 
prefix code, if no code word is the prefix (contained fully as the beginning) of 
any other code word. The big advantage of such prefix codes is that the ends 
of the code words don’t have to be marked. The code words can be written 
one after the other without separation since such a text can be decomposed 
into separate code words in only one way because of the prefix character
istic. In other words, the prefix code is uniquely decodable. There are other 
uniquely decodable codes which do not satisfy the prefix condition, for exam
ple, the code consisting of 0 and 0! code words. Next, we consider the fol
lowing example. Let the values of £, be the decimal digits and let the following 
code words composed of zeros and ones be assigned to them:

Decimal
digit

Binary
representation

0 0 0
1 0 1
2 1 0 0 0
3 1 0 0 1
4 1 0 1
5 1 1 0
6 1 1 1 0
7 1 1 1 1 0
8 1 1 1 1 1 0
9 1 1 1 1 1 1

It is easy to see that this is a prefix code. If we now write an arbitrary sequence 
of these codewords (such that the same codeword can appear in the sequence 
more than once) the resulting sequence of code symbols can be decomposed 
into code words in only one way and therefore can be decoded uniquely. For
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example, the sequence

1110101111110100000000110011111110101 

can be decoded into code words only in the following way:

110| 101111110| 1000|00|00|01110011111111101101 

and this corresponds to the decimal digit sequence

6472001391 1.

A prefix code is called primitive if it cannot be shortened, i.e., if the resulting 
sequences of code words are not a prefix code no matter what way we take 
symbols from the code words. It can be easily seen in the case of a primi
tive prefix code that, if we choose any sequence j of 0’s and l’s which is none 
of the code words, then either there is no code word with the prefix s, or 
if there is, and we write a one or a zero at the end of it, (in both cases) the 
resulting sequence will be either a code word or the beginning of one.

A convenient graphical representation of a binary primitive prefix code can 
be obtained by representing each code word by a terminal node in a tree. 
Starting from the root of the tree, two branches will lead from every node 
which is not a terminal node. If we assign a 0 to every branch on the left and 
a 1 to those on the right, then the terminal nodes will uniquely correspond 
to a 0-1 sequence where the successive digits can be thought of as providing 
the climbing instructions (the choice between left- and right-hand branches at 
every node). In this way, the sequences corresponding to the terminal nodes 
will be the desired code words. Such a tree is called code tree. For example, 
the tree representing the previously described primitive code is:

11111C 111111

root
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Let Nk denote the number of code words with length k in a primitive prefix 
code, and let the length of the longest code word be r. Then,

(6)
M , 7V2 Nr
-y + 2r+...+-y

holds. In our decimal to binary coding example: Nk=0, N2=2, Ns=2, N^=3, 
Nb= 1, Ng—2, and so,

2i ' 22 ' 23 ~ 24 ' 25 ~ 26 26 22 23 24 25 26

113 11 16 + 8 + 6 + 1 + 1 _ .
= T+T+l6 + 32 + 32 “ 32 L

(6) can be proven in the general case as follows: take an arbitrary primitive 
prefix code and represent it with a code tree as described above. Let’s imagine

a monkey who climbs that tree, randomly choosing with probability —

between left and right branches at every branching point. If the monkey 
reaches a terminal node, it stays there. Obviously, the probability that the 
monkey will reach a terminal node to which a code word of length k cor
responds (being at height k) is -i-. Since there are Nk such endpoints, the

monkey will reach height k with probability But the monkey stops

climbing only when it reaches a terminal node, therefore it must be true that

(since the sum of the probabilities corresponding to the mutually

exclusive outcomes of an experiment is always equal to 1).
(6) can be written in another form, too: if £ assumes the values xk, x2,xN 

and the appropriate primitive prefix code words composed of 0’s and l’s have 
lengths of /l5 /2,..., lN respectively, then

(7) 1,1, ,1
2Í7+2ÍT+-+2Í7-1’

because on the left side of (7) there are Nk of —, so that side is equal to

which, according to (6), is equal to 1. The numbers —therefore

create a probability distribution which we will denote by Q. Let’s calculate 
the information theoretical distance D(P,Q) between P={pk, ...,pN} and Q.



FOURTH LECTURE 39

Since this distance is non-negative, it is true that

D(P,Q) =
kd

(8) ZpJ*sh(í).

The meaning of L= 2Pkh is obviously the expected length of the code 
word of 0’s and l’s assigned to £. Therefore, (8) means that if an arbitrary 
sign sequence is coded into sequences of 0’s and l’s so that the resulting code 
is a primitive prefix code, the average code-word length cannot be smaller 
than the information content of £. The reason for this is clearly that a 0 or 1 
sign can contain a maximum of 2 bits of information. Therefore, to code H(£) 
bits with a sequence of zeros and ones the length of the sequence on the aver
age should be at least H(£), assuming that no information is lost. In the case 
of prefix codes, information cannot be lost since, as we have seen, these codes 
are uniquely decodable. In other words, inequality (8) expresses the principle 
of information conservation, meaning that H(g) bits cannot be compressed 
into a sequence of 0’s and l’s of length less than //(£)•

Information, therefore, behaves like an incompressible fluid!
So far, we have spoken only of coding by means of sequences of zeros or 

ones. Whatever has been said so far can be generalized without difficulty in 
sequences where every element can have one of q possible values. In such a 
case, instead of (8), we get

(9) io g2q

which can be interpreted similarly: a signal which can assume any of q values 
contains maximum log2 q bits of information. If any particular value of 
is coded on the average with a code word of length L, in which every element 
can have one of q values, then a code word, on the average, will have at most 
L log2 q bits of information. And if the code can be uniquely decoded, then 
L logg q cannot be smaller than //(£).

At this point, the notion of redundancy comes up. If a text has symbols, 
all of which can assume any of q values, and if the text contains H bits of 
information per symbol, then the redundancy of the text is defined as:

R = 1 — H
log2 q '

R is a number between 0 and 1 which tells how much of the text would 
be dispensable in case of optimal coding. Shannon investigated the redundancy
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of written English and found it to be approximately 0.5. This means that, with 
ideal coding, a written English text (using the same 26 English letters) can be 
reduced by half. The redundancy of other languages is somewhat smaller but 
still comparable (30-40%). In connection with this, the lecturer pointed out 
that it would be a mistake to take the redundancy of these languages as a 
shortcoming: on the contrary, redundancy has a very important function: it 
lessens the influence of mistakes such as misspelling, typographical errors, 
etc.) and, in any case, makes it possible to understand a text. If languages 
were not strongly redundant, then, in a noisy room (like a crowded restaurant), 
we wouldn’t be able to talk to each other. To look at this in another way: 
redundancy makes language resistant to noise. Our lecturer mentioned that 
later on when we investigate the central problem of information theory, the 
transmission of information via a noisy channel, we will get to the so-called 
error-correcting codes which automatically correct a certain small number of 
errors. Now, spoken languages can be looked upon as natural error-correcting 
codes. We can see the 50% redundancy of a text as follows: if we randomly 
erase half of the letters in that text we can still, uniquely, reconstruct it from 
the remaining letters. How much of it can be reconstructed depends, in addi
tion to the language, on the kind of text. For example, the language of the 
newspapers has a larger redundancy than that of novels, or more particularly 
of poems, because newspapermen like to use stereotyped expressions, while 
poets prefer original and unusual adjectives and expressions. As an example, 
we looked into today’s newspaper and the lecturer arbitrarily chose a sentence 
and erased 50% of it. Wherever he erased a letter, he put a period instead, 
while a dash stood for the space between two words. What he wrote on the 
blackboard was the following:

. DMIN. STR .T.. .-O.. IC. A. S-D.-. O. CEPT-. H .- 
F.R.CA.T.-.F-.-R..ES.L.

We were able to fill in the missing letters without any difficulty. (It was of 
course helpful that we had already seen versions of this sentence, almost 
word for word, in previous newspapers.)

What really fascinated me in today’s lecture was the point about informa
tion behaving like an incompressible fluid. The remarkable thing is that infor
mation, which is certainly a matter-like substance, has characteristics similar 
to matter. What I was thinking was that, although information itself is not 
matter, it can exist only as connected to matter. Only matter or energy (for 
example, electromagnetic waves) which in this context, in contrast to informa
tion, I will include in the notion of matter, can carry information. A text of 
letters can be preserved only if it is written or printed on paper, or carved
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into stone. A voice comes forth in the form of the movements of air-molecules 
or on records, tapes etc. The transmission of information between two points 
can happen via cable, with the help of electric current or radio waves. It 
would be very useful to know in what form our thoughts and memories exist 
in our brains and how they are recorded. Although we don’t know these 
processes in detail, it is clear that they can happen only in connection with 
matter, brain matter, that is, the chemical and electrical events of the brain. 
So it follows that the speed of transmission of information cannot be arbitrarily 
great, it certainly cannot exceed the speed of light. I thought a lot as well 
about the notion of redundancy. When I fill in the absent letters in a text, 
I use the context — but we have learned that the context of information can
not be and is not a subject of information theory. Therefore, the method of 
investigating the redundancy of a text by erasing and reconstruction is not 
appropriate. By this method, we would get a correct estimation of the real 
redundancy only if the reconstruction could be done by a computer. In that 
case, the meaning of the text wouldn’t be a factor because a computer wouldn’t 
understand it and could reconstruct it only by means of a dictionary and 
grammatical rules. If, for example, the computer reads

TH. .OG B.RKS-.HE C.RA.AN PROGR..S.S,

it will realize that, in the first word, the missing letter is E, and in the third, 
it is A, since no other letters will produce intelligible words. What about the 
second word? Here, the computer cannot decide whether to insert a D or an 
L since judging by grammar alone, the sentence “The log barks” is as correct 
as “The dog barks”, although it is meaningless. The computer cannot deter
mine that a sentence is nonsensical. This example shows well the difficulties 
to be encountered in programming computers to translate. Finally, I thought 
about how one might construct a variable-length primitive prefix code (or the 
appropriate code tree) of less than average code length for a set of messages 
with a given probability distribution. For N= 2, the problem is trivial. For 
N—3, the only possible primitive prefix code is the one with a code tree like 
this:

What has to be decided is which of the px,p2, p3 probabilities should be assigned 
to the point which is one unit away from the root. It can easily be seen that
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it must be the largest of the three numbers, and that the two smaller ones 
should be assigned to the point which is 2 units away. Starting with this, I 
figured out how to construct, in general, a code of minimal average word 
length, or the appropriate code tree. The procedure is a recursive one. Let’s 
assume that we know for N code words how to construct the tree. Assume 
now that we are given N+ 1 words with their probabilities arranged in 
decreasing order, p^p2= ...= Pn-i—Pn—Pn+i- Let’s modify the distribu
tion by deleting the two smallest, pN and pN+1 and by adding to pi9 ...,pN-i 
the number p^=Pn~^~Pn+1' Now we have a probability distribution of N 
elements and, as assumed previously, we know how to construct a primitive 
code of minimal average word length or its code tree, having numbers 
px, ..-,Pn-i->Pn assigned to its N terminal nodes. On this tree, let’s branch 
out two new branches from the node with p%, and put the numbers pN and 
pN+1 at the two terminal nodes. Thus we have arrived at the prefix code of 
minimal average word length for messages with a (plt ...,Pn,Pn+i) distribution.

An example can make this process crystal clear. Let N= 5 and the prob
abilities of the messages be the following:

11111
Pi = ~3> ^2 = _5’ P3~~5’ Pi~~6’ P5~10'

Replacing the two smallest numbers by their sum will result in the distribu

tion — Again, combining the two smallest numbers, we get the

what to do, so we end up with the following code tree:

10

34 5
The average word length is ——=2.266..., while pk log2------2.220... .

15 &—i Pk
(In the figure, the number at each branching-point of the code tree is the sum
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of those terminal node numbers which can be reached from that particular 
branching-point.)

I thought out the proof of this in the general case and it’s not at all hard. 
But I won’t set it down here, because since I solved the problem (and I was 
very happy when I did) I found the same method in one of the books the 
lecturer gave me. It is called the Huffman code.

At first, I was disappointed that this was already known because I really 
thought that I had discovered something new. Later, I realized that this was 
predictable: since we are very much at the introductory level of information 
theory, it is quite impossible that we should be encountering any unsolved 
problems. But I’m not sorry about the time I spent solving this problem because 
it cleared up several matters for me relating to codes and code trees and 
because it enabled me to understand fully what we had learned. I have read 
somewhere that you really understand only what you figure out for your
self, like a flower which can only use the water absorbed through its own 
roots.

Today I spoke to the lecturer and told him how I had “rediscovered” the 
Huffman-code. He consoled me by pointing out that the value of my efforts 
is not lessened because I wasn’t the first. He also told me about an actual 
unsolved problem related to the Huffman code: how should the construction 
be modified if the length of the codewords cannot exceed a given limit? I will 
think about this problem. Right now, I don’t even see why it’s such a diffi
cult problem, but obviously it cannot be easy, since if it were, it would have 
been solved a long time ago. The existence of this problem shows that what 
I wrote before is not true: even if we are just at the beginning of information 
theory, there are already, on our current level of knowledge, unsolved, open 
problems!

Fifth lecture

Today we started to hear about the central problem in information theory, 
the problem of information transmission through a noisy channel. The pro
fessor started with the block diagram set out below:

Noise
I

Emitter Encoder Channel Decoder Receiver(Source)
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This figure shows the process of information transmission via channel: the 
emitter, which can be human or machine and which can also be called the 
information source outputs a certain meassage which is coded by an encoder 
before transmission. The aim of coding is twofold: to change the message 
into a form suitable for transmission and to make it “noise-resistant”. By the 
channel we mean the whole physical path between the coder and decoder. 
In the case of a telegram, the channel is a wire, while in the case of a message 
sent from a spacecraft, the channel is the whole universe. Because of “noise”, 
information passing through a channel will be randomly distorted or modified. 
“Noise” means any kind of distorting influence which is random in its effect. 
For example, if I send a message to a person via a third person, he is the 
channel and his inaccuracy or lack of attention is the noise source. In the case 
of a radio or TV in a spacecraft, the channel is the Earth’s atmosphere and 
possible sources of noise are electrical events such as atmospheric electricity, 
messages from other transmitters on neighbouring wavelengths and elec
trical appliances such as elevators operating near the transmitter or receiver.

The decoder has a bigger role in case of noisy channel than in a noiseless 
situation. In this latter situation, decoding is simply a unique translation, as 
in coding, only backwards. In the case of a noisy channel, the arriving signal 
is distorted and the decoder must, as best it can, figure out what the undistorted 
message was and then decode it. The reconstruction of a noise-distorted signal, 
in general, can be done in many ways; a choice must be made among the 
several possibilities. Generally, it is assumed that the principle of the decoder 
is to choose from the possible signals the most probable one. These are the 
ideal decoders. To be able to calculate the probabilities of different reconstruc
tions, the decoder needs to know the probabilities of individual code words, 
in other words, the statistical laws applying to the information source and the 
probabilities of the different types of distortion introduced by the channel, 
i.e., the statistical laws of the channel. These can be assumed to be known if 
the information transmission has been going on regularly for quite some time 
under basically unchanged circumstances. The theory of information trans
mission in noisy channels relates to these cases.

There are some cases where the transmitter can have some knowledge about 
what has reached the receiver. In such cases, we talk about feedback. To 
this point, we have dealt only with channels into which signals are emitted 
one after the other, so that each signal can have only finitely many values.

Let these values be a1, a2,..., aq. Assume that the noise does or does 
not distort the signals independently of each other, and that at can be distorted 
only in such a way as to “turn” it into (i&j). Thus, we are assuming that 
the receiver messages are the same as the source messages. Denote by £ a
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coded signal and r\ the possibly distorted version of it which reaches the decoder. 
If £ is not distorted, then r\=£; otherwise r\

Obviously, /(£, rj) amount of information regulates how well the channel 
can be used: we are interested in exactly how much information tj, the signal 
received can give about 5, the transmitted one. Of course, /(£, rj) depends 
on the distribution of Let’s consider the maximum /(£, rj) for all possible 
distributions of This is called channel capacity c:

c = max /(£, rj).

At a glance, it is evident that c gives only a theoretical limit for the amount 
of information which can be transmitted through the channel by one signal. 
This can be proved precisely. Assume that time t is needed to transmit one 
signal. Then the speed of information transmission through the channel (i.e.

transmitted information per unit time) cannot exceed the limit —. If the
T

information source outputs more information per unit time, it cannot be trans
mitted through the channel even with the most suitable coding. In such a 
case, the transmitter must decrease the speed of transmission in some way. 

It can be proven that, if we prescribe any velocity which is less than the

critical —, it will be possible to transmit information at velocity v through

the channel so that it can be reconstructed with an arbitrarily high probability 
in form close to that which was transmitted. The so-called coding theorems, 
which will be discussed at the next lecture, prove this fact with different assump
tions. These theorems state only the theoretical possibility of information 
transmission at the specified velocity. They say nothing about the construc
tion of the code. There is another chapter of information theory which deals 
with such construction: the theory of error-correcting and error-checking codes, 
which uses algebraic tools (linear algebra, group theory, Galois theory, and 
finite geometry, as well as the results of modern combinatorics). All of this 
will come up in future lectures. In this lecture, we worked out the following 
simple example: Let the input/output signals of the channel be 0 and 1. Assume 
that in the channel, because of noise, the input signal 1 will become an output 
signal 0 with probability p (this kind of channel is called a symmetric binary 
channel). Now

P(rj = 0|5 = 1) = p, P(r\ = l|f = 1) = 1 -p,

P(rj = 0\rj = 0) = \ —p, P(t] = 0|5 = l) = p.
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If P(£=0)=w and P(^= 1)1 —w then, introducing the notation 
q=w(\—p)+{\ — w)p, we arrive at

/(£, n) = Hq)-Kp\

I(£,rj) is maximum if and therefore

c = max /(£, rj) = 1 —h(p).

With simple arithmetic, it can be shown that if and only if w=~

and q=P(j]=0). This shows that the capacity of a symmetric binary channel 
is used maximally if the input signals assume the values 0 or 1 with probability

1
2’

so that the output signals will be 0 or 1 with the same probabilities. But

the transmitted information will be only \—h(p) of a bit. This is quite under
standable because, although every output signal contains 1 bit of information, 
h(p) bit of it is information about the noise and only (\ — h(p)) of a bit is

information about the input signal. Of course, when p=
1
2’

then \-h(p)=0

and no information can be transmitted through the channel, because the out
put signal is now completely independent of the input signal. Citing this 
example, the lecturer pointed out that if we are not concerned about trans
mitting at a speed close to the maximum speed allowed by the channel ca
pacity, in the case of transmission through noisy channel, but, rather, about 
transmitting information reliably in spite of the noise, we can do so quite 
easily if every signal is emitted not once, but several times. For example, if 
every signal is repeated (25+ 1) times where 5^1, then among the (25+ 1) 
signals arriving, there will be a certain number of ones and the rest, 25+ 1 — r, 
will be zeroes.

Now let’s do the decoding using the principle of majority: if r^5+ 1, 
then the signal repeated 25+1 times will be taken as 1, while if r^s, it 
will be taken to be 0. (The reason for transmitting the signal an odd number 
of times is to avoid getting a 0 or 1 an equal number of times.) Even in this 
way, it is possible to be mistaken when decoding, but the probability of this

can be made as small as we want, if by making the value of s

large enough. The larger s is, the lower will be the speed of information trans
mission. This coding method is quite primitive; with more complex but also 
more practical processes, the same result can be obtained (i.e., ensuring an
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error probability which is arbitrarily small) without a drastic reduction in the 
speed of transmission.

I tried, when thinking about what I heard today, to make a connection 
between information transmission through a noisy channel and our game. I made 
up the following version, which I called “Bar-kochba with lies”. Assume that 
the number of questions which can be asked to figure out the “something” 
being thought of is fixed and the one who answers is allowed to lie a certain 
number of times. The questioner, of course, doesn’t know which answer is 
true and which is not. Moreover, the one answering is not required to lie as 
many times as is allowable.

For example, when only two things can be thought of, and only one lie is 
allowed, then 3 questions are needed. If the two things one can think of are 
the numbers 0 and 1, then I will ask three times if it’s the 0. If I get a “yes” 
answer at least 2 times, I can be sure that the other player did in fact have 
the 0 in mind, since he could lie only once, and therefore when he answered 
“yes” twice, he could not have been lying, because it would have meant that 
he had lied twice). Similarly, if I get two “no” answers, 1 is surely the number. 
If there are four things to choose from and one lie is allowed, then five ques
tions are needed. If two or more lies are allowed, then the calculation of the 
minimum number of questions is quite complicated. And I think that the 
game “with lies”, when more than one lie is allowed, becomes too complicated 
for a game as such, but is pretty good at helping one to understand the diffi
culties encountered in the transmission of information via a noisy channel. 
It does seem to be a very profound problem: I am very curious to hear the 
proofs of the coding theorems.

Recently, I read an article somewhere about how we would be able to 
establish communication with intelligent creatures who also have a high level 
of technology (if they exist somewhere on another planet in the Milky Way). 
From what I heard today in the lecture, I would say that this is an information 
theoretical problem, too. If, for example, these creatures discover us and 
start to send messages with radiowaves, their messages will reach us in quite 
a distorted form, mixed up with all the “noise” originating in space. To decode 
in this case is much harder than in the case of the noisy channel we dealt 
with in the lecture because in this situation we cannot even be sure whether 
there really is a message or whether the signal received from space is only ran
dom cosmic noise. Moreover, even if these signals do contain a message, we 
don’t have the foggiest idea of what the original signal might have been like. 
So we don’t know what are the input messages we have to decode. This problem 
is more difficult than the usual problem of information transmission through 
a noisy channel. Our only hope is that these supposedly existing intelligent
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creatures are smart enough, not only to realize that there are intelligent crea
tures on Earth to whom it is possible, technically, to transmit information 
from such a tremendous distance; but also to transmit it in such a way that 
we can recognize it as a meaningful message, in spite of the cosmic noise, 
and can then decipher it. If they are incapable of that much, then we prob
ably won’t be losing too much by not being able to make any contact with 
them.

Yesterday I went to see the movie, Fahrenheit 451°. It seems I am com
pletely engrossed in information theory and I try to connect everything with it. 
The movie made me think how interesting it is that a human being can only 
memorize a book word by word with enormous difficulty and can only keep 
it in his memory with an almost heroic effort. On the other hand, educated 
people have read several hundred — some of them several thousand — books 
and retain a more or less clear picture of each one without any effort, and those 
who read intelligently remember the essence of each book. It seems that infor
mation isn’t stored in the brain in the same way as it is in a book or a com
puter. It occurred to me suddenly that one characteristic of the human memory 
which is in contrast to the memory of computers, is that it stores the content 
of information in some way, i.e., it does exactly what the machine is unable 
to do. On the other hand the brain is weak in an area in which the machine is 
at its best: the remembering of long signal series regardless of their content 
with complete accuracy.

By the way, if we substitute for the total, word by word memorization of a 
book with a memorization more appropriate to the human brain — that is, 
relating to its content, or message — then every teacher is a walking book, 
but one which hasn’t been printed. That should be the main goal of education 
at a university, namely, that the professors should teach only what is missing 
from the textbooks and exists only in their minds. There are some of our 
professors who do exactly that, but there are others who read aloud or recite 
by heart what is in the books and then are surprised that most of the students 
do not attend the second lecture and that whoever does, does so only to sleep 
at the back. This year, a visiting foreign mathematician, in his lecture given 
before the Bolyai Society, after starting a particular theorem said: “and now 
I will tell you what is the yoga of this theorem”. He meant several things by 
this: that he would try to put into words why the theorem was interesting, 
what its essence was, which step causes real difficulty in the proof, what kind 
of trick can be used to overcome that difficulty, how one can think of a theorem 
like this, etc. In other words, he wanted to talk about those things which can
not be set out in the usual jargon of textbooks, monographs, and essays, since 
one cannot even give a mathematically precise formulation of them. But an
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answer reflecting the essence of a problem — the yoga of it, more or less — can 
be extraordinarily interesting, especially for a beginner. The “book”, which 
we carry in us and whose contents, let us hope, we will some day pass on to 
the next generation, is shaped by and composed of these very remarks.

Now I will stop writing for a while because I want to think about the talk 
I have to give next week on the parallel between energy and information.

Preparation for my talk

It seemed at first much more of a philosophical question than a mathematical 
one, so I wondered if philosophers might already know something about it. 
I have an enthusiastic, bright philosopher friend and I asked him. He certainly 
got very excited since energy and information both play important roles in 
our lives. Although he couldn’t tell me anything right away, he promised to 
do some research on the question.

This, as he told me later, did not prove to be a very fruitful exercise. First, 
he had looked through the Marxist classics, and then turned to Hegel but to 
no avail at all. He felt a little oflened when I remarked that, to solve new 
problems, one should not so much look up old quotations, as employ new 
thinking.

In the meantime, I had realized that, wherever energy has a role, information 
transmission gets into the picture, too, and from that point on, the analogies 
become self-evident.

Let’s consider the seemingly unrelated area of history. The history of human
ity can jokingly be called the history of energy. The importance of the dis
covery of the energy of fire was tremendous. But to keep the fire burning, 
to supply it with fuel requires an organized human group. Consequently there 
arose need for a method to convey information: for hand signs, for speech. 
Therefore, the discovery of fire can be linked (although not very firmly) to the 
development of one form of information transmission. But let’s go further. 
Human beings tamed the primitive energies of nature, such as the wind; and 
wild creatures as well, from which sailing and farming came into existence. 
Transportation, and the production of goods made it possible for some people 
to become rich and pay skilled workers to develop new methods of informa
tion transmission, namely, the arts — painting and sculpture. The wheel which 
transforms the energy of a back-and-forth leg action into rotary motion, gave 
a great impetus to the potter’s craft and the decoration of clay pots said many 
things to the people of that time (and of this).

We can draw a parallel between the discovery of the wheel, the lever, and
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of simple machines in general and the development of writing, and also between 
the discovery of the steam-engine and the invention of printing. And, to cite 
at least one obvious example: it was the use of electricity which made possible 
the existence of probably the most important information-transmitting 
machines of today: the telephone, radio and TV.

I woudn’t dare suggest these parallels to my historian friends; they would 
point out too many flaws in them, by showing either that my logic is faulty 
or that the time connections are impossible. Still, I think that there is some
thing in them and even if there isn’t, what is clear is that the evolution of 
humanity is closely connected not only to the development of different kinds 
of energy and energy transmission but also to the development of informa
tion transmission. The two greatest recent inventions, atomic energy and com
puters do not seem to have anything to do with each other. But surely it is 
clear to everyone that it cannot be purely coincidental that a new energy source 
and a new method of information processing were discovered at almost the 
same time.

The level of economic development in a country can be linked almost 
directly to the amount of energy used. But it can be characterized almost as 
well by the amount of information in circulation, in which we should include 
everything, from the daily news to information on the economy and business.

I wasn’t particularly surprised to find analogies in biology as well. Every 
living being is capable of converting energy into energy, or matter (food) 
into energy. Of course, the higher each species is on the evolutionary scale 
the more skillful it is and the more complex its functions in this area.

The information conversions carried out by living beings are probably even 
more complex. When the sensory part of every simple animal comes into 
contact with food, it is capable of reporting this to its motor system which 
can then fill its mouth with the food. Light (an image) coming to the eye of 
an animal will travel via many small neurons to its brain, interestingly enough, 
with the help of chemical impulses. Then the image will be processed there. 
As a further example, the conditioned reflex of Pavlov is a very complicated 
information processing method. But I don’t want to write about the human 
brain and how intricately it can transform and process information because 
if some creature from Mars finds my diary, he may think us humans show-offs 
(probably not without reason).

Another example from biology: in the morning, after getting out of bed, 
one of the first things I want to do is eat, to have something to convert into 
energy (but, of course, I don’t think this over every day, I just feel hungry). 
At the same time, I start to read the newspaper, as a result of which I some
times try to put the bread into my nose instead of my mouth. So, simply put,
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I’m hungry for information, for something to gnaw on during the day, so I can 
be annoyed at whatever it was that was badly written in that day’s paper. 
Not only living systems, but any other system (Party, Mathematical Society, 
factory, Army, anthill) to be able to operate, necessarily requires the circula
tion not only of energy (matter, money) but also of information among its 
members.

I think I have found more than enough analogies. If I mention them all 
during my talk everybody will be bored stiff.

Let’s go deeper. What about the matter-like nature of information? Well, 
if energy is matter, then information must somehow be spirit-natured.

But how can this be so? No, no, no ... information is matter because it can 
only be transmitted by means of matter (or energy), such as symbols on paper 
or electrical or chemical impulses.

Later, I recalled that there are certain telepathic, or more scientifically 
speaking, parapsychological phenomena where the transmission of informa
tion is accomplished without matter or energy. Yet, at present, there is not 
much we know about these phenomena, not even whether they really occur 
and if so, how. Probably by some form of matter or energy, not yet known 
to us, in which case even this is not a counterexample to my thought. Fine, 
but the same information can be transmitted in different ways. For example, 
the write the same things in the newspapers as they say on the radio. There
fore information must be independent of the matter which transmits it. Now, 
at last, it is clear. This is the case with energy, too. It is not important in what 
form we get it, what is important is the amount we receive. So the analogy is 
essentially complete even from this point of view. I wrote “essentially” because 
if we prescind the medium of energy, what remains is just a number, its quantity. 
Doing the same thing with information, we still end up with the information 
in its entirety, although information theory at present is concerned only with 
quantity and not quality.

After this debate, I made an agreement with myself to look for an analogy 
in some more serious relationship.

We know that during the transformation of energy, no energy is lost. Some 
time ago, I was thinking that when we code a message, what we are really 
doing is information conversion, like the conversion of the potential energy 
of water into electrical energy. Is it in any sense true that during conversion, 
the information doesn’t increase or decrease; and if so, in what sense?

One of the papers given me by the professor deals with exactly this ques
tion.

If a signal contains H(£) information and by coding there will correspond 
to a signal, on the average, an L= pkIk signal, then the principle of in forma-
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tion conservation should mean that the L signal of the coded series contains 
//(£) information, i.e., in one of them there will be

(10) _ #(0
L information.

This formula (if it is really true) reminds me of the formula describing the 
energy conversion of a transformer. If there is a secondary coil of L turns 
for every one turn of the primary coil, then the energy per one volt on the 
primary side is equal to L volts of the secondary, i.e.,

(ID Ex _ LE2

where Ex and E2 denote the energy of the primary and secondary sides respec
tively and Vx and V2 the respective potentials.

Since 1 volt is transformed into L volts, V2=LV1 and Ex—E2 follows 
from (11). In the case of a transformer then, (11) (which corresponds to (10)) 
does reflect the conservation of energy.

By analogy to —=/, //(£) and H can be called information current den

sity.
The professor had already referred to (10) in his fourth lecture. In a coded 

sequence, for every place, there can be q different symbols, which limits H to

being at most log2 q. Then it follows from (10) that log2 which is

equivalent to (9). Moreover, this shows that we cannot get equivalence in (9) 
because H cannot be made equal to log2 q.

But the problem is that H is still not defined. It cannot, as I will show, 
be defined the same way as H{£). If £ can assume two values xx and x2 with 
probabilities px and p2 and these are coded 00 and 01, the first symbol of 
the code will surely be 0, while the second will be 0 or 1 with probabilities 
Pi and p2, respectively. Therefore, the entropy of the first symbol (=0) is 
different from that of the second. In other words, the entropy per symbol H 
cannot be defined as the entropy of a symbol as it was in the definition of 
//(£). Next, let’s think about taking the entropy of the first n symbols and 
dividing it by n. In this case, we must also be careful, because the entropy 
of the first n symbols is not the sum of their individual entropies since the 
code symbols are not independent. If, for example, the code of xx and x2 
are 00 and 11, respectively, then the entropy of the first two symbols is

Pi log-----\-p2 log —,
Pi P 2
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although their individual entropy also amounts to this. Naturally, this defini
tion is still no good, because it depends on n. Let’s assume that the quotient 
of the entropy of the first n signals and n approaches a number, defined to be 
equal to H, as n approaches infinity.

With this definition, (10) can be proven if the coding can be uniquely decoded 
as the paper suggested. However, I won’t discuss it in my talk because the 
proof is so lengthy. Among the articles, I found another which proves (10) in 
a more general case (for example, when the individual signals are of finite

length in time). It follows from (10) that . Finally, my earlier
max//

philosophical considerations led me to solve a problem which is important 
in practice for a very general case, i.e., what the minimum of the average code 
length is. All of this shows that the search for analogies (seemingly for their 
own sake) may not be such an extravagance.

But (10) has a flaw, namely, that it is true only if the codewords can be 
uniquely decoded. If the code is such that every xt is coded by 0, then H= 0, 
so (10) is not true in general. In the case of energy conversion, one can say 
that not all of the energy arrives where it is supposed to, but some of it changes 
into, for example, heat energy. When coding is bad, information will not be 
lost. It will remain in the original series which had been coded. Thus in this 
case, the situation is even worse, because if we also count the original informa
tion, then adding to it the entropy of the coded series, the total information 
must generally be more than it was originally. Therefore the parallel doesn’t 
really work in the case of coding which is not uniquely decodable.

During energy conversion, a little bit of the energy (sometimes not so little) 
always side-steps. In a transformer, it changes into heat-energy and in other 
cases friction develops. In no case can the entire amount of energy be trans
mitted, unless it is the case of uniquely decodable coding. This may be so, 
but after coding, the information would have to be transmitted through an 
ideal, noiseless channel, which doesn’t exist in practice. The probability of a 
mistake can be very small but never zero. In addition, something like (10) 
can be proven for such channels. Decode the signal series received from the 
channel and consider its entropy. The entropy per signal in this series is almost 
equal to the entropy of the original series. More accurately, if the maximal 
error probability approaches zero, then the entropy of the decoded series 
approaches the entropy of the original series.

I didn’t find this observation in the papers I was given but I was able to 
prove it quite easily. If the noise (which can be looked upon as friction in the 
channel) is not great, then only a small amount of information will be lost, 
and the less the noise, the less will be the lost information. That the amount
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lost is equal to the noise is not true, although I’m sure it must be true in some 
form. I firmly believe that it would be a most significant discovery to find 
such a relation and to prove it. I don’t understand how some of the authors 
of these papers could have failed to formulate and mention this problem. 
I guess they are working on it a lot themselves and don’t want others to solve 
it before they do. That is certainly not the right approach. I will definitely 
talk about this problem and maybe someone with a good idea will be able to 
advance the discussion of the topic.

The principle of energy conversion makes everyone think of perpetual 
motion right away. What about perpetual motion in information? In a noise
less channel, i.e., simple coding, there is no information loss, so one can 
expect to maintain continuous information circulation, just as in the case of 
frictionless mechanical motion. Imagine, for example, that we have constructed 
the Huffman-code of the Hungarian alphabet. Let’s take a sentence and code 
it letter by letter with Huffman code, then code this series of 0’s and l’s using 
Morse code (so that we decode it in our imagination) and lastly decode it 
again so that we end up with the original text. Even if this process is repeated 
infinitely, the information will remain the same, none will be lost.

This cannot happen with channels in practice. Consider the ease of gossip 
which, as the saying goes, often travels in circles. If we start circulating a 
piece of gossip, it will be very much distorted when it gets back the first time 
and sending a new version on its way will result in the reception of an even 
more distorted one etc., until it has nothing to do with the original.

My conclusion is that in the case of coding and channels which can be 
easily modelled mathematically, the parallel between information and energy 
is quite good. What about the case of those difficult events which occur in 
nature, is it true there too? In crystallization, it looks as though information 
is born. But, in reality, the structure of the electrons in the atoms has always 
contained this information; these inherently existing characteristics cause the 
grid-like arrangement of atoms.

It is curious that this information actually resides in the atoms. Here, then, 
is another point which disturbs the analogy between information and energy. 
In energy conversion, the origin of one form is the result of its destruction 
as another form. In coding, the information of the message to be coded is 
preserved.

Somehow this analogy of crystallization is not at all clear to me. The origin 
and evolution of life, which happened some billions of years ago, is quite 
similar. Can it be explained by saying that the information thus originated 
had been in the atoms? Ah, I’ve really gone a little too far if I even want 
to solve the problem of the origin of life with information theory. Anyway, I’m



PREPARATION FOR MY TALK 55

too sleepy and tomorrow I have to give this talk, so it will be better if I go to 
bed. I really am nervous. If only I had had a little more time to think over this 
concluding material a little bit better!

My talk, I think, was very good. We argued a lot. I didn’t even have time 
for the problems of crystallization and the origin of life. At the end, the pro
fessor congratulated me. He found my remarks on the principle of informa
tion conservation of noisy channels especially interesting. He also empha
sized that it’s not good to keep quiet about half-formed conclusions, or hunches.

I am eagerly awaiting the future lectures. The professor doesn’t look too 
well.

I hope it’s nothing serious.



Games of chance and probability theory

INTRODUCTION

The aim of this article is to introduce by the use of understandable and inter
esting problems in certain games of chance, especially card games, some con
cepts and methods of probability theory*. Although I have tried to give a 
full description of the rules of the games, I have done my best to phrase the 
examples so that they can be understood by those who are not familiar with 
the games involved. Of course, those who play bridge will get more out of the 
problems concerning bridge than those who don’t.

One might ask if it is worthwhile to consider card games and games of 
chance in general from a scientific viewpoint. My opinion is an unconditional 
“yes”. It is worthwhile not only because it helps us to understand combina
torics and probability theory, but also because these problems are interesting 
in considering the history of science. For example, problems provided by 
games of chance played quite an important role in the formation of probability 
theory. Finally, it is also worthwhile because the knowledge gained from the 
mathematical investigation of games of chance fostered the development of 
many new ideas in modern science and technology. The concept of shuffling 
is a good example. It relates not only to the mixing methods used in chemical 
technology but also to the fundamental notions of thermodynamics.

ON THE SHUFFLING OF CARDS

Whenever we consider questions about a distribution of cards in probability 
theory, we always assume that the deck of cards to be dealt from is “well 
shuffled”. Card-players use this expression often but since they never define 
it precisely, let’s start by seeing what it means.

* I cannot make a detailed probability theoretical evaluation of the individual games 
here but I will provide references with the discussion of each game indicating where the 
interested reader can find a more detailed description.
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From a probability theoretical point of view, a deck of cards is well shuffled 
if, after shuffling, all possible sequences of the cards - their permutations — 
have the same probability. In the case of n cards, there are n\ possible per
mutations* and so a deck of cards is well shuffled if the probability of every

sequence is —-. The probability of an arbitrary event A (where event A

k
means a certain card sequence) is —, where k means the number of sequences

n\
where A is the outcome. For example, if we shuffle a deck of 52 cards, the

probability that the uppermost one is an ace is -yj, because among the 52!

sequences there are 51! which start with a particular ace. (Since if the upper
most card is the ace of hearts, with the 51 cards underneath one can make 51! 
different sequences). There are four aces, therefore k=4 51! and the desired 
probability is

k 4 51! 4 1
52! “ 52! ~ 52 “IT

In reality, shuffling is accomplished either by a player or by a machine making 
the same movement 10 or 20 times. Every movement means the rearrange
ment of the deck of cards, i.e., the application of a permutation to the sequence 
of the cards. The permutation of a set of numbers form a groups.

The product of two permutations, for example, P and Q, denoted by PQ, 
means that first we change the random arrangement by P and then carry out

* We can put any card in the first place so there are n possible candidates for this place. 
No matter which we choose, we cannot now put that one in the second place, so the number 
of cards available for this position is only n — 1. We can make our choices regarding the 
first two places in %-(/;-!) ways. Continuing in this way, the resulting total of sequences 
will be («• (ai 1)-(/i 2)...2• l), since the last card can be chosen in only one way: the 
one which remains. The short form of the number «(/i-l)(«-2)...2 • 1 is n\. (Gy. Katona) 

To explain the notion of group requires the introduction of the notion of operation. 
Taking two elements of a given set (in a certain order), we assign to them another element 
of the set (which can be one of the first two). Examples of such an operation are addition or 
multiplication on the set of integers. In a group, there is only one operation; let us denote 
it by the multiplication sign. A set with an operation is called a group if there is an element 
e such that multiplying any element a of the set by e will result in a, and if for each given 
element a of the set, there is another which multiplied by a results in a product of e. If the 
operation is the addition on integers, then e=Q, because adding it to any number will 
leave the number unchanged and because, given any number, we can find another which, 
added to the first, will result in a sum of zero (for example, a and a(-l)). If the operation 
is the multiplication among integers, then e= 1, but, because we cannot find an integer a 
for 2 such that 2 • o= 1, this is not a group. (Gy. Katona)
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the Q rearrangement on the resulting sequence. For example, if n—22 and 
P is the

1... 16, 17...32,

17...32, 1... 16,

permutation, meaning that the card which was originally the 17th is now the 
first, and that the card which was originally the 18th is now in the second 
place and so on, until the last place is occupied by the card which was originally 
the 16th (this can be done by lifting the top 16 cards off the deck, placing 
them on the table and placing the bottom 16 on top of them), and if Q=P,
i.e., if we carry out the same operation a second time, then PQ—P2=1 is 
the identity permutation, so that the result of these two operations will be the 
original sequence.

Now we can construct two plausible mathematical models (i.e., a simplified 
picture of the real process). The first we will call a deterministic, and the second 
a stochastic model.

Let’s first assume that any shuffle results in the same type of rearrangement 
of the deck. Let this permutation be denoted by P. Having carried out this 
kind of shuffling k times* is equivalent to one rearrangement of the starting 
configuration, the one which corresponds to the P permutation to the power k.

Such a shuffle is unsatisfactory from a theoretical point of view because 
(in principle) the result can be calculated exactly.

It is not satisfactory in practice either, the smaller the order of the permuta
tion P, (i.e. that smallest positive number r, for which Pr=I, where I denotes 
the identity permutation, in which each card remains in the same place) the 
more unsatisfactory it becomes. (The order of permutation P in the above 
mentioned example is r=2.) If r is the order of permutation P this means 
that the permutations P, P2, ..., Pr are all distinct (but any higher power 
of P coincides with one of these), therefore no matter how many times we 
repeat a permutation of the order r we will not be able, theoretically, to produce 
more than r different arrangements. If there were a permutation P which was 
of the order n\, with its repetition, we could produce every possible order. 
Such a permutation doesn’t exist if 3, because the symmetric group of

* Doing P one after the other k times will result in the permutation PP...P (k times); 
which can be shortened to read Pk. (Gy. Katona)
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order n is not cyclic (moreover it is not even Abelian*, while the cyclic ones 
are). From a purely mathematical viewpoint, the distribution of permuta
tions according to order is an interesting problem Pál Erdős and Pál Túrán 
deal with in a recent paper [1], but since the movements in shuffling are never 
repeated exactly (not even when the shuffler is a machine) I won’t discuss this 
point in detail.+

The other, more realistic model of shuffling is as follows.
Assume that the result of a shuffle depends on chance also and that a given 

shuffle can result in only permutation with a certain probability. Assume 
further that the individual shuffles are independent of each other. This means 
that if we somehow number all possible n\ permutations of n and denote by 
Qj the one which corresponds to the number j, then each individual shuffle 
produces permutation Qj with probability q} (j—1,2,...,»!). (Of course,

q~ 1.) If the z-th shuffle produces permutation II t, then 17, is a random 
f=i
permutation with distribution

P(/7f = Qj) — qj (j = 1, 2, ..., n\, i = 1,2,...),

i.e., the random permutation IIt will be equal to Qj with probability q} and 
the distribution of J7, is independent of J7X, ...,77i_1 permutations.

In this case, after the A>th shuffle (if the original configuration of the cards 
was the 1, 2, ..., n) we get the permutation

TTi, I72,...»IIk = I7(k).

The nw permutations constitute a so-called Markov chain*. It is known 
that if the distribution {q}) is such that for an arbitrary subgroup G of the

* Symmetric group of order n: the group of n element permutations.
Cyclic group: there is an element a in the group such that all other elements of the group 

are powers of a.
Abelian group: the product of every multiplication will be unchanged if the order of the 

factors is changed. (Gy. Katona)
+ Erdős and Túrán prove in [1] that among the n\ permutations, most of them have 

order between the limits e(1/2_£) log2/j and e(1/2+s) log2 n, where e>0 is an arbitrarily 
small number if n is large enough (here log n means the natural logarithm of n). In the 
case of the shuffling of cards, this means that, in most of the permutations of the 52 cards, 
the shuffler need repeat his movements less than 200,000 times to get the cards back to the 
original order. Compare this to the number 52!, which has 68 digits.

* All this means is that if 7i(k-1) is fixed, then 7t(k) does not depend on 7t(k-2) or any of 
its Predecessors), in other words, depends on these previous permutations only through

(Gy. Katona)
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group of all permutations

(21) 2" % < i,QjiG
(i.e., the distribution is not concentrated in a subgroup), then for a large 
enough k, the distribution of /7(k) will be almost uniform, meaning that any
permutation has the same probability of occurring |about after a large

number of shuffles. More precisely in this case*

(2.2) lim P(J7<1> = Qj) = -A U = 1.2......«!).

[Condition (2.1) will be satisfied if for every j the q}>0 relation holds.] 
Practically speaking, it follows from the above that if every movement in 

shuffling is random, the result can be any configuration. If we undertake a 
large enough number of shuffling movements, then the assumption that “the 
deck is well shuffled” is valid. We will not deal here with what is meant by a 
“large enough” number of movements.

Certainly it was worthwhile to consider the process of shuffling in such detail 
since it is well known that the most frequently used trick of card sharks is 
insufficient shuffling (see [5] too.)

PROBLEMS ON THE DISTRIBUTION OF CARDS

Let’s investigate some simple examples!
A) Poker. Every player is dealt 5 cards of the 52. The following configura

tions are distinguished in the game:

1. Straight Flush: All 5 cards are of the same suit and in sequence. (The ace 
can be taken as a 1 or as the card that follows the king, for example, 9, 
10, Jack, Queen, King of Hearts.

2. Four of a kind: Four of the five are the same (for example, 4 kings), the 
fifth can be anything.

3. Full House: Three of the five are of one value and the remaining two are 
a pair (for example, three 10’s and two Kings).

4. Flush: All five cards are of the same suit (for example, all are clubs).

* This theorem is a special case of the generalization of the central limit theorem in 
probability theory for topological groups which gives a condition for convergence in the 
Haar measure. (See [2] and [3].)
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5. Straight: The five cards are in sequence but are not all of the same suit, 
(for example, 5 of clubs, 6 of clubs, 7 of spades, 8 of hearts, 9 of diamonds).

6. Three of a kind: three cards are the same (for example, three 7’s), the other 
two can be anything (but different from each other, otherwise the hand 
would be a Full House).

7. Two pair: Two sets of two are the same (for example, two aces and two 6’s) 
and the fifth has any value other than those represented in the pairs.

8. One pair: two cards are the same (for example, two Queens), the three 
remaining ones can be anything, so long as they differ from each other and 
from the pair.

The probabilities of these hands can be calculated if we calculate the num
ber of ways in which each of them can possibly occur and divide these num
bers by the number of all possible combinations of five cards out of 52. For 
example, four of a kind can occur in 13 • 48 ways, while you can pick 5
cards out of 52 in r?| different ways*. The probability of four of a kind is

therefore
13-48 13-48-120 -i— = 0.000240. 

416552) 52-51 -50-49-48

It may appear that we have calculated in a different way here than before 
because we did not consider the order of the cards. But this does not influence 
the final result, because five cards can be arranged into 5! = 120 configura
tions and leaving this factor out of the numerator and denominator will not 
change the value of the ratio. Employing a method similar to the one dis
cussed previously, the probability of four of a kind can be calculated as fol
lows. Assuming that there are four players and that the cards are dealt one 
to each in turn, the player who is first in order will get the first, fifth, ninth, 
thirteenth and seventeenth cards of the deck. The number of configurations 
of the deck where there are five fixed cards in these places is 47! because

Z52) 52! 52-51-50-49-48
* I 5 J is the shorthand notation for - — =---------- —-----------. It is easy to prove

the last expression. If we consider the order in which the five cards were dealt, then the 
result is 52-51 -50-49- 48, since any card can be the first and any card but the one dealt 
first can be the second, so that there are only 51 possible choices for the second position, 
etc. But in this way we will count each set of 5 cards 5! times, i.e., as many times as there 
are possible configurations of five cards. That is the reason for dividing by 5!

In the product 13-48, the number 13 signifies the 13 possible combinations in which 
we can choose the same card from each of the four suits, while the fifth card can be any of 
the remaining 48. (Gy. Katona)
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that is the number of ways in which the other 47 cards can be arranged in the 
47 remaining places. Therefore the probability that a player will be dealt four 
of a kind is:

13-48-5147! 13-48 1
52! “ |52j “ 4165'

which is the same result as before. The probabilities of different hands are 
summarized in the following table (to 6 decimal places)

Straight Flush 0.000 014
Four of a kind 0.000 240
Full House 0.001 385
Flush 0.001 967
Straight 0.003 532
Three of a kind 0.021 055
Two pair 0.047 373
One pair 0.422 570
No combination 0.501 864

Total: 1.000 000

In poker, the more a hand is worth, the smaller is its probability. (The order 
of the probabilities in the above table can change if we don’t play with 52 
cards or if there are one or more Jokers in the deck.)

According to the rules of poker, the players, after looking at their cards 
anteing, can discard some of their cards and ask for others. While the prob
ability of not getting any combination in the first deal is somewhat larger than

— , if a player subsequently asks for 5 new cards, the probability that he will

still not get any combination is exactly —. But since the two events are 

almost independent, the probability that no one will have any combination 

after the second deal is only approximately —. If I play poker with three 

other players, the probability that none of them has even one pair is approx.* 

——, which means that if I have only one pair I can be almost sure that at

east one of the other three also has a pair, or a better hand. To win with a
1

* The events are not completely independent but close to it, so we will not commit a large 
error if we multiply the probabilities.
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pair, therefore, is quite improbable. That one can bluff in poker is another 
consideration.

We refer the reader to K. Jordan’s book [4] which contains many more 
probability theoretical problems concerning poker.

B) Bridge.* The 52 cards are dealt to four players, who are divided in 
teams of two. There are two parts to the game: the bidding and the actual 
play. Many bidding systems are known. In the Culbertson system (see Ref. [5]), 
the players first evaluate their own cards and decide accordingly what to bid 
as a Trump suit. The evaluation is carried out by counting the so-called “Tricks” 
according to the following rules:

Ace (without the king and queen of the same suit): 1 Trick 
ace and king (without the queen of the same suit): 2 Tricks 
ace and queen (without the king of the same suit): 1.5 Tricks 
ace, king and queen of the same suit: 2.5 Tricks 
king (without the ace and queen of the same suit): 0.5 Trick 
king and queen of the same suit (without the ace): 1 Trick

The value of the hand is determined by the sum of the tricks. For example, 
if the hand is as follows:

SPADES: 
ACE QUEEN 

10 8 7

HEARTS: 
KING QUEEN 

4 3 2

DIAMONDS: 
QUEEN 7

CLUBS:
8

its value is 1.5+1 = 2.5 tricks.

The value of any hand is a number determined by chance, therefore it is a 
random variable.

Let us now investigate what is the expected value of a hand.4"

* Bridge is not strictly a game of chance, because the skill of the players is more important 
than chance. The distribution of the cards, nevertheless, depends on chance so many prob
ability theoretical problems arise here, too.

+ The expected value of a random variable is determined by calculating the weighted 
sum of all the possible values of the random variable (where the weights are the appropriate 
probabilities of the particular value). In other words, if the random variable can assume 
the values xl9 x2, ..., x„ with probabilities Pi,p2,...,pn respectively, then its expected 
value is

£(£) = PiXi +p2x2+... +pnxn.

The importance of the expected value can be demonstrated by the law of large numbers.
If we observe the values assumed by a random variable in a large enough number of 

independent trials, then the algebraic average of the assumed values will almost certainly 
be very close to the expected value of the random variable.
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To be able to do so, we would first have to calculate the distribution of the 
hand, i.e., the probabilities that a certain player has a hand of 13 cards of 
value 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 
respectively. (It is easy to see that there are the possible trick values.) Although 
this is not too difficult to do, we will adopt a simpler method, using a property 
of the expected value, namely that the expected value of the sum of random 
variables is equal to the sum of the expected values of these random variables. 
Let’s denote by e1? £2, £3 and £4 the values of the hands of the four players. 
Obviously, if the deck of cards is well shuffled, the expected values of all four 
hands are the same. The trick value of the first player’s hand also consists of 
four parts:

£1 = £11 + £12 + £13 + £14>

where en, e12, £i3 and £14 stand for the trick values in spades, hearts, diamonds 
and clubs, respectively.

Similarly, the values of the hands held by the other players can be writ
ten as:

£2 = £21 + £22 + £23 + £24 > 

e3 == £31 + £32 + £33 + £34> 

e4 = £41 + e42 + e43 + £44 •

The expected values of the random variables su (i= 1, 2, 3, 4;/= 1, 2, 3, 4) are 
the same. If m denotes this common value, i.e.,

E(Sij) = m (i,j = 1, 2, 3, 4), 

then, because of the additivity of the expected values,

£(£i) ~ 4m = Efeu + £2i + £3i Tc4i).

Since £n+£2i+£3i+£4i is the sum of the trick values of the four hands 
in spades, we have demonstrated that the expected value of any hand is equal 
to the expected value of the sum of the spade tricks in the four hands. To 
calculate this value, we will first have to investigate how the ace, king and 
queen of spades are distributed among the four players. If all three are in dif
ferent hands, then s11+£21+£31+e41= 1.5. If the ace and king are in one 
hand and the queen in another, or if the ace and queen are together while the 
king is elsewhere or finally, if the king and queen both happen to have been 
dealt to one hand, and the ace to another, then £n+£2i+£3i+£4i—2. Lastly, 
if all three are in one hand, then £n+e21+£31+e41=2.5.

We can calculate the probability that the ace, king and queen of spades are 
in different hands. If player A receives the ace of spades, he will be dealt 
another 12 cards from the 41 and the other three players will get 39. The
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probability that A will not get the king of spades is therefore —. If player

A and player B receive the ace and king of spades respectively, then the 
probability that the queen of spades will go to C or D is, reasoning as

above,
26
50

Thus, the probability in question is:

39 26 
51 ' 50

169
425 = 0.398.

Similarly, it can be seen that the probability that two of these cards are in the 
same hand and the third in another is

, 12 39 
3 * 51 ‘50

234
425 0.550.

And the probability that the ace, king and queen are in the same hand is

22
425 0.052.

The sum of these three should, of course, be equal to one: 0.398 + 0.550+
+ 0.052=1.

The expected value of the value of a player’s hand is thus: 1.5 • 0.398+ 
+ 2-0.550+2.5 • 0.052=0.597+ 1.100+0.130= 1.827-1.8. This result sub
stantiates the rule of the Culbertson system that at least 2.5 tricks are needed 
to start bidding since to have 2 tricks is to have a not better than average 
hand. On the other hand, if the player’s partner has started the bidding, then 
1.5 tricks, i.e., a close-to-the-average hand, is enough to respond. The reason 
for this is that the expected value of the sum of the expected values of the 
two opponents’ hands is 3.6; while with 2.5+ 1.5 = 4, the partner of the 
player who started the bidding can expect to be stronger together than the 
other side.

Another instructive question in connection with bridge is as follows: if a 
player has two aces, what are the probabilities that the other two are in his 
partner’s hand, that only one of them is there, or that he has none of them? 
Obviously, the other two aces are among the three other hands dealt out of
the 39 remaining cards and they can be distributed in ways, of which

|*2 j are valid in relation to the first question. Therefore, the probability that



66 GAMES OF CHANCE AND PROBABILITY THEORY

the partner has the other two aces is

The probability that only one ace is in the partner’s hand is:

13-26 26

(?)
while the probability that he has none of them is:

The sum of the three probabilities of course, is equal to 1:

6+26+25 ,
—— = 1-

A detailed probability theoretical treatise on bridge which is understandable 
to laymen can be found in a book by E. Borel and A. Chéron [Ref. 6.].

GAME STRATEGIES

In this section, we will restrict ourselves to the following simplified game of 
chance. There is one player (let’s call him Peter) against the Bank. The game 
consists of a series of runs. At every run Peter can decide how much he wants 
to risk and this amount is called his bet. He must put his bet on the table, 
therefore he can never bet more than the money he actually has with him. 
Then they carry out a random experiment which has two possible outcomes, 
the events A and Ä, with probability p and q (where p+q= 1, 0<p< 1) respec
tively. If the outcome happens to be A, Peter can keep his bet and the Bank 
pays him the amount of his bet. If the event Ä is the result, the Bank collects 
Peter’s bet.

Coin tossing is such a game with p=y (if we assume regular coins). Roulette

is another example, if we assume that Peter will always choose a red num
ber. In that case, since there are 18 red and 18 black positive numbers, and
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a zero (the bank also wins if the outcome is zero), on the revolving wheel, 
18p=.
37

1
It is well known that if P—~-> there is no system to ensure that Peter will

win. Let us restrict ourselves to the p= — case. Let sk= +1 if Peter wins

on the kth spin (i.e., if the outcome is event A) and sk= — 1 if he loses (so 
that Ä occurred). Let Sk denote Peter’s bet on the kth spin, Sk may depend 
on e1, e2, ..., sk_1: Sk= S^,ek__x). Each Sk always assumes non-nega
tive values. 5^=0 means that Peter does not bet on the kth spin. S^O 
and Sj=0, if _/>«, means that Peter stops playing after the «th spin.

If Peter sits down with N dollars, we understand as one of Peter’s possible 
strategies an arbitrary series of the non-negative functions St(e1,..., e*^) 
(/<= 1,2,...) (where Sx, is constant and the variables st can assume either ± 1 
values) provided that

AM- 2 8ksk(ei> •••» ek-i) = 0 for («=1,2,...).fc=i
Let £0 =N.

The sum £n=N+ 2 EkSk(ei> •••> sk-i) («=1,2,...) indicates how much
k=1

money Peter has after the nth spin. The random variables (n= 0, 1, ...) 
form a so-called martingale (Ref. [7]), which means that the expected value 
of given

*91» *92, •••» l»n —1
is always equal to

It can easily be seen in the case /?=y, that E(£n)=£n_1 («=1,2, ...),

thus no system will guarantee that Peter wins for sure. It is worthwhile to 
spend some time with the following faulty “system” — popular among gam
blers who don’t know probability theory. This system holds that Peter should 
keep betting 1 dollar until he is 1 dollar ahead for the first time. At that point, 
he should quit. It does seem that this system ensures that Peter will win 1 dol
lar, since (with probability 1) sooner or later he will win. In reality, this is 
not a winning strategy. Obviously this system is not justified according to 
the rules above because if Peter loses in the first N spins, or if during the first 
N+2M games, he loses a total of N+M times and wins M times in such 
a way that he is never ahead in the meantime, then he cannot continue in the 
game and (with a positive probability) will lose all his money. In fact, his 
expected winnings in such a game is 0 and this can be proven as follows. Let
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fk(N) denote the probability that Peter loses all his N dollars instead of 
winning k—N dollars. If N^2, then

(4.1) AW = 1),

This event can happen if Peter loses on the first spin and then loses his remain
ing (N—1) dollars on the next one instead of gaining (K-N+l), or if the 
wins on the first spin and then loses (N+1) dollars instead of winning 
(K-N- 1).

It can easily be seen* that all possible solutions of the difference equation 
(4.1) have the form of fk(N)=AN+B. Since /*(0)=1 (i.e., if Peter has no 
money he cannot play and therefore he cannot win) and fk(k)=0 (because 
if at the beginning of the game Peter had k dollars, he didn’t even have to

N
play) therefore fk(N)= 1 ——• We are interested in k=N+1, so the prob

ability that Peter will lose N dollars before gaining the one is —-—. Accord-
./V+ 1

ingly, the expected value of his winnings using this system is

From what has been said so far the reader could well conclude that what 
probability theory can tell the gambler is that if he is only playing for the 
winnings (and not for the joy of the game), then it’s better for him not to 
play at all. But that is not the case. If what the gambler asks of the mathe
matician is to work out a system which guarantees winning, then the wish 
is an untenable one and a mathematician cannot help. If, on the other hand, 
the gambler’s aim is reasonable, the mathematician can tell him the best way 
to reach his goal.

Let us first consider the following problem. Peter plays heads or tails. At 
the start, he has N dollars, and he decides to play until his money amounts

* The proof is as follows: if A (A) satisfies (4.1), then g(N)=fk(N)-~ (fk(k)-fk(0))-

~fk(0) satisfies (4.1) as well and g(0)=g(k)=0. Let max g(N)=G(N1), then by induction 
it can be seen that *(7^+/)= G (y= 1,2, ...,&-#,). Similarly *(^-7)=G 0=1,2, ...,NX)

therefore g(N)=0, if N=0,1,..., k and so fk(N)=AN+B where A = ~(fk(k)-fk(0)) 

and B=fk(0).
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to M>N or until he loses everything. For which system will the probability 
of his winning be greatest? Let w=w(N, M) denote the probability that 
Peter will stop playing with M dollars. Since he cannot lose more than N 
dollars and since the expected value of his winnings should be 0, therefore

N
w(M— N)—(l — w)N=wM^N=0 which implies —. The question is

M
N

with which system will the probability of winning be w=-—? Let us sup-
M

which if he wins on the next toss, he will end up with the M dollars he was 
aiming for. For example, if N— 1 and M= 10, then Peter’s play will be as 
follows: On the first toss he will bet 1 dollar; if he loses, he will have to quit 
and if he wins he will have 2 dollars. In the latter case, he will bet 2 dollars 
on the second toss, so that if he loses, he can depart with sorrow and if he 
wins, he can take all his money (i.e., 4 dollars) on the next toss. As a loser 
in that round, he will go home empty handed but he will have 8 dollars if he 
wins. Now he will bet only 2 dollars so that if he wins, he will already have 
his 10 dollars and can quit. Even if he loses, he will still have 6 dollars and 
will be able to continue playing. By betting 4 dollars on the next toss, he will 
have 10 if he wins and can go home happy and even if he loses, will still have 
2 dollars. He can still play with those 2 dollars — and so on. In this numerical 
example, the flow of Peter’s money can be shown with the following directed 
graph (see Fig. 1).

There are two edges |of probability —j leading from every vertex. If pt 

is the probability that the player will get from point i to point 10, then the

+.8------► 10

6

Fig. 1
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equations set out below follow:
_ 1 ,1

Pa — y + "2* Pb,

_ 1 ,1
Pa — h2+~2'P2>

1
Pi — ~2'Ps>

1
P2 — ~2 'Pi->

1
Pi = ~2’Pi-

By substitution, this system of linear equations can be solved in the fol
lowing way (because its determinant is not 0):

furthermore,

which gives

and thus

Pi — 2pi, P\ — 4/?!, p8 — 8 Pi,

\6p1-p6 = 1, p6-p1 = y,

i for i = 1, 2, 4, 6, 8.

Therefore, w(l, 10)= — . Similarly, we can determine w{N,M) when N

M
and M are arbitrary positive numbers such that N<M and — is a rational 

number.
If iV and M>N are very large numbers, this method is not as appropriate 

because of the large number of equations we would end up with. Accordingly, 
in the general case, we should apply another method. It is true in general if 
N and M are arbitrary positive numbers (not necessarily integers) and N<M, 

N
then w(N, M)— —. We can demonstrate this as follows. Assume that M— 1 

M
and 0<iV< 1, since we can choose M to be our monetary unit. Let w(N, 1)=
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=f(N) (O^TVs 1), then the following equation is obviously true:

(4.2) /(*) =
y/(2%)

■y + y/(2x-l) for |sx^l.

This equation can be solved as we solved (4.1). Let g(x)=f(x)-x, then g(x) 
satisfies (4.3)

(4.3) g(x) =

This being so, g(x) is bounded, — lsg(x)s 1 since f(x) is a probability 
and thus Os/(x)S 1. Let G= sup g(x) and x„ be a sequence such that
Jim g(xn)=G.

From the (bounded) sequence x„, a convergent subsequence yn can be chosen, 
to yield

lim yn = y and lim g(y„) = G.
TI-+00 n-+-oo

If — for infinitely many n, then according to (4.3),

1 GG = lim g(yn) =§ — lim sup g(2y„) s —,
n-foo 2. n-*oo 2*

while —^yn^L 1 for infinitely many n, so

so that G-— in all cases, i.e., G^O.

Now let g—ojnfig(x). Using a similar reasoning, it can be shown that
g— 0, which means g=G=0, i.e., g(x) = 0 and therefore f(x)=x, which 
is exactly what we wanted to prove.

It should be noted that in the game of tossing coins each strategy which 
results in Peter losing all his money with probability one in finitely many runs 
or winning the desired amount, the probability of winning will be the same 
as in the “daring” strategy discussed above.

On the other hand, let’s examine a game where Peter wins his bet in each 
case with probability p and loses it with probability q=l—p, where
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18
(Roulette is such a game; if Peter always chooses a red, p=-—, as

we have seen.) In this case, it does matter what kind of strategy Peter chooses 
and the “daring” strategy is indeed optimal. Let’s assume again that, at the 
beginning of the game, he has a sum of money x, where 0<x< 1, his goal 
being to end up with this sum being equal to one. Let g(x,p) denote the 
probability that Peter will achieve his goal if he uses the “daring” strategy.

As in the case where p=-— when we arrived at (4.2), now we get

(4.4) g(%, P) =
pq(2x,p)

P+{\-p)gQx-\,p)

for 0 = x Ss — > 

for y S x ^ 1,

provided that g(0,p)=0 and g(!,/?)= 1. In the same way that we concluded 
that the function /(x) satisfying (4.2) must be identical to x, we now conclude 
that there is a unique solution to (4.4) which satisfies the conditions g(0, p)= 0, 
g(l, p')— 1 • (This was first proven by G. de Rham [Ref. (10)]). One solution 
of (4.4) can be constructed in the following way. Let £i,£2, ••• be inde
pendent random variables assuming the values 0 and 1 with probabilities p 
and 1— p respectively.

oo i
Let r\= 2—n~ and let Fp(x) denote the distribution function* of random 

variable r\. Then Fp(x) satisfies the equation

Fp(x) —

for 0 ^ x 

1

1
2 ’

/>+(! — p) • Fp(2x—1) for t^xsI,

and the conditions Fp(0)=0, Fp(l)= 1. Thus Fp(x)—g(x,p).
The measure pp(A) in which pp(/a>b)=Fp(b)— Fp(a) for 0sa<hsl, where

Iab denotes the interval a^x<b on the Borel-sets of the interval (0,1) 
can be characterized as follows. The measure of the interval |o, — j is p,

and the measure of the interval |y, lj is 1 -p. The measure of the interval

* The probability distribution function of a random variable r\ is F(x)=P(ri<x), i.e., 
F(x) gives the probability of rj being less than x. (Gy. Katona)
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|o, —j is divided in the proportion p/(l—p) between the intervals |o,-ij 

and , —j: a similar proportionality is used for the interval , lj, etc. 

Therefore there will be |^7j intervals having measure p\l—p)n~l for

1=0,1, ...,n among the (k=0, 1, ..., 2n-1) intervals. Fp(x) is

a strictly monotone increasing function, continuous and singular; its deriva
tive is in almost all cases 0. The measures pPi and pPt are orthogonal if p^p^. 
Clearly /r1/2 is equivalent to the Lebesgue-measure since

T/2O) g |x, —j — x (0 = x S 1).

We will not show here that, in the case of , it does matter what kind

of strategy one employs, and that the “daring” strategy is optimal. Instead, we 
will give an illustrative example.

(18 \
p=—I with 25 dol

lars and that he will use the “daring” strategy to try and win 100 dollars. He 
will succeed if and only if he wins on the first two spins and the probability 
of that happening is p2= 0.244... . Now let us see how he would do if he 
were to apply a more cautious strategy, always betting only 25 dollars. He

would accomplish his goal with a probability of

p2 if —, because

1 — 2p + 2p2
and

l-2p + 2p* 1 ' 2

P2- 1 —2p+2p2
p2(\-p)(l-2p)

p2+(l-p)2
0.

If p=-
18

then -=0.2301, indicating that Peter’s chance of win-
37 ’ * " l-2p + 2p2 

ning is more than 23.5% using the “daring” strategy, while it is somewhat less 
in the case of the “cautious”.

The book strategy by L. E. Dubbins and L. J. Sarage deals with similar, 
more general problems (Ref. [8]).
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A MATHEMATICIAN’S WAR AGAINST THE CASINOS

To finish up, we will tell of a curious case which shows what the mathe
matical theory of games can and cannot do. An American mathematician, 
Edward O. Thorp, who was teaching at a university in Los Angeles went to 
Las Vegas for a couple of days during the winter holiday. He visited one of 
the casinos there, played twenty-one (blackjack) — and lost. Annoyed, he 
began to think about what would be the best strategy to use in playing black
jack (as it used to be played in the Nevada casinos).

Blackjack is played as follows. The dealer (an employee of the casino) 
deals two cards to each player from a thoroughly shuffled deck of 52 cards. 
The players don’t show their cards to the dealer, but the dealer, who also 
gets two cards, has to show his first card to the players. The cards have the 
following values: 10 points for each court card (jack, queen, king), and face 
value for all other cards (for example, a 7 counts for seven points) except for 
the ace, which, at the player’s option can be valued as either 1 or 11. The 
winner is the one whose hand value comes closest to 21 without exceeding it.

Each player, after looking at his hand, can ask for as many additional 
cards as he wishes, but if the total value exceeds 21 he has to show his cards 
and is out of that round. The dealer can also deal further cards to himself. 
Bets are made freely between an upper and a lower limit. Every player plays 
against the dealer. If a player has a better hand than the dealer he wins as 
much as he bet. If his hand is worse, then he loses his stake. And in the case 
of equality (for example if both are 21) no money changes hands.

The big advantage for the dealer comes from the fact that the players always 
have to show their hand when its value exceeds 21. In addition, they lose 
their bet even if the dealer has more than 21, because he doesn’t have to show 
his hand if everyone else’s hand has already exceeded 21.

Thorp realized that the casino set very strict rules in accordance with which 
their employees have to play*. For example, if the dealer’s hand is or exceeds 
17 he cannot “request” another card for himself. Thorp thought that the 
freedom a player has (as opposed to the dealer), in that he does not have to 
show his first card and can decide the amount of his bet, in theory, makes it 
possible to work out a winning strategy. His most important observation 
was that at that time in the casinos of Nevada, in order to save time, the dealer 
did not shuffle the entire deck of cards after every game but used the remaining 
cards to deal for a new game until none were left. That way, if a player memo

* These strict rules are intended to prevent employees from collaborating with the players 
in order to split the winnings after deliberately losing.
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rized which cards had been used and changed his strategy accordingly he 
should be able to increase his probability of winning, if he knew how to use 
this available information. For this, he would have to use the conditional 
probabilities of a card being dealt, given the reduced deck of cards. But the 
rules should be simple and easily remembered to enable the player to decide 
quickly whether to ask for another card or not. Thorp, with the help of MIT’s 
IBM 704 computer, worked out* an easily memorizable strategy which pro
vided some advantage against the casino. At the meeting of the American 
Mathematical Society in Washington in 1960 he gave a talk on his computa
tions.

In a couple of days, he received a letter from a businessman who offered 
him 100 thousand dollars to try his system out. Thorp accepted the offer and 
— after the businessman hadle arned his system — the two went to Nevada. 
The experiment was a complete success: the businessman won 17,000 dollars 
in two hours. The owner of the casino was not at all as enthusiastic as Thorp 
and his companion to see the conquest of science, and the next day, giving 
several excuses, he refused to let them play. Later, Thorp tried other casinos 
but his fame preceded him and they would not even let him in. At some casinos, 
he disguised himself with a false beard, or as a Chinese to get the tables 
but no disguise could camouflage his continuous winnings, and so he was 
forced to stop applying his mathematical results in real life. His revenge on 
the casinos was the publication of a book with a detailed description of his 
system (Ref. [9]). So many people learned the winning strategy that the casinos 
were forced to change the rules of the game. One of the changes introduced 
was that the entire deck of cards was shuffled after every game, thus removing 
the basis of the strategy. In this way, we have come back to our starting point: 
the importance of shuffling.
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Notes on the teaching of probability theory

In what follows, I will discuss the teaching of probability theory in general 
— regardless of the type of school or the age of the students.

Three basic questions will be considered:
1. why should probability theory be taught?
2. what should be taught? and
3. how should it be taught?

In other words I will speak of the aim, the content and the methods of teach
ing probability theory.

My remarks are based on personal experiences, not only from teaching at 
the University, but also from conducting courses on probability at the Free 
University of Budapest for interested high school students and from the tele
vision series I made which was watched by a very eclectic audience, from the 
very young to grown-ups, with quite diverse interests and background knowl
edge.

1. WHY SHOULD PROBABILITY THEORY BE TAUGHT?

First, it may seem that this question can be answered adequately only if we 
are considering a certain type and level of education. In my opinion, there 
are still some general points which can be made anyway. I will state what 
I think the main goals of teaching probability theory are. These goals should 
be kept in mind no matter which branch of probability theory one is teaching, 
although they might be stressed differently depending on the kind of school 
involved. They are as follows:

A) Probability theory should be taught because of the important role it can 
play in the development of the students’ ability to think.

B) It should be taught because of its usefulness in everyday life, in science 
and technology, etc.

C) It is important, indeed indispensable in mathematical education.
I will now expand upon these points.
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A) At the University in Budapest, there was a Professor of Law who used 
to ask the following question during examinations: “what do you see when 
you look down from Gellert Hill to the city?” The student was supposed to 
answer: “Subjects of law and legal entities”!

I do not know what this professor would have said had somebody answered 
“stochastic processes”. He probably would not have understood the answer, 
although it would have been as correct as the one he was expecting. To under
stand the concept of probability is indispensable in comprehending the world 
around us; it is a corner-stone of our scientific world-view. Any branch of 
mathematics will help to further the mental development of students and 
teach them to think logically in clearly defined ideas. But the role of a 
student’s thinking is more than that. Probability theory can teach students the 
usefulness of clear and logical thinking even if they have to deal with uncer
tainty (and uncertainty is what we encounter almost always in reality).

The study of probability even strengthens students’ character. For example, 
it increases their courage when they understand that certain failures are due 
to chance so that a set-back is not a sufficient reason for giving up. Primitive 
people have a tendency to be very superstitious: if something goes wrong 
they try to attribute it to somebody’s maliciousness even if such is not the 
case. The reason for this is that they do not understand the notion of chance. 
The study of probability theory can help to erase these remnants of magical 
thinking from the Stone Age, to make people more understanding toward 
fellow human beings and to help them to find their place in society.

B) In everyday life we encounter chance continuously. Probability theory 
can teach us how to take into account the different risks involved in different 
decisions and then arrive at a reasonable attitude. Choosing the most suitable 
insurance policy from among those available is a good example of a situation 
in which probability theory can be applied in our lives. In preparing the family 
budget or planning a trip, we have to estimate costs which, to a certain extent, 
depend on chance. These examples show that everybody needs to know the 
laws of chance.

The application of probability theory in science, technology, economics, etc. 
has risen so much in importance that more and more people need a working 
knowledge of it in their work. How much weight we should give to this con
sideration depends on the type of school involved. We should, however, keep 
in mind that nowadays every educated person, independently of his/her pro
fession, should have some knowledge of subjects such as atomic energy, radio
activity, genetics, etc., and to understand these at even a layman’s level one 
needs a certain knowledge of probability theory. Today, when we learn the
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probability of rain for tomorrow during the weather forecast, it would be 
practical for everyone to know what that probability really means.

C) Familiarity with the element of probability fosters an understanding of 
the connection between reality and mathematical models. Those pupils who 
have not had any exposure to the question of probability during their education 
will never have an adequate conception of what mathematics is and what it 
can be used for. People who are not acquainted with probability theory share 
a common misunderstanding, namely, that mathematical methods can be 
applied only to situations where a simple and accurate dependence exists 
among a few precisely measurable entities. One often hears, even now, that 
mathematical methods cannot be used to describe certain events because of 
their complexity. This is a prejudice of people who have learned some mathe
matics but not probability theory and this point of view has (at least in some 
countries) held up the application of mathematical methods in economics, 
sociology, biology, psychology and other areas for quite some time.

It is worth noting that the idea of teaching probability theory at high school 
or elementary school accords with other modern trends in teaching mathe
matics. On the one hand, some knowledge of set theory and Boolean algebra 
makes it easier to teach probability theory; on the other hand the study of 
probability theory will, by instructive applications, enhance the understanding 
of the notions of set theory and Boolean algebra.

2. WHAT SHOULD BE TAUGHT?

I will make just a few remarks on this topic because my aim is to deal in 
the main with general issues which are of importance at any educational 
level, while a specific course outline would depend very much on the kind 
of school involved, the age of the pupils, their mathematical background, etc.

I think that every course on this subject should contain some material on 
each of the following themes:

A) Probabilities in reality, i.e., the demonstration of statistical laws in every
day life, in nature, in games of chance.

B) The mathematical theory of probability.
C) The application of probability theory in the description of random mass 

phenomena and in the prediction of possible outcomes.
D) The history of probability theory, including a discussion of the philo

sophical questions relating to the notion of probability. The order of these 
four points corresponds, in my view, to the logical order in which they 
should be discussed.
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I want to avoid any misunderstanding that may arise when I say that the 
teaching of probability theory should begin with the introduction of the stu
dents to the idea of statistical laws. I do not mean that one should start with 
statistics. On the contrary, I have not found any of the attempts to teach 
statistics without the critical notions of probability as prerequisites satisfactory 
either from a logical or a pedagogical point of view. It would be desirable to 
start the teaching of probability theory by discussing well chosen examples and 
experiments. First, we should indicate what are the basic issues to whose 
understanding the mathematical theory of probability can contribute and only 
then should probability theory be tailored to the particular age group and 
mathematical background of the students. Of course, the length of the school 
term and the particular goals of the school (if any) should also be taken into 
account. In my opinion, mathematical statistics should be taught as a sep
arate subject only at the university level to those students who need it.

I have encountered opinions to the effect that the practical importance of 
probability theory can only be demonstrated by way of teaching statistics. 
I myself do not think so; a great part of the most important applications can 
be understood with some introductory knowledge of probability theory alone. 
It should be pointed out in any course on probability theory that, in practice, 
the basic parameters for most of the cases ought to be determined empirically, 
and that, if one has a large enough sample, such a task will not require diffi
cult statistical procedures. In the introductory discussion, it ought to be 
explained that the study of the inverse problems of probability theory (where 
we want to infer the parameters of a probability distribution from observa
tions) is the subject of another field; mathematical statistics, which is based 
on probability theory, yet is not a part of it but an independent subject. The 
Bayes method can be discussed in the context of probability theory, so that, 
if time permits, part of it can be included in the introductory lectures.

Concerning point D), I think that while it is generally desirable and useful 
to discuss the historical background of any subject, such a discussion is espe
cially useful in the teaching of probability theory. Even in a short introductory 
course, it is important to mention the philosophical problems relating to the 
concept of probability because it will help the students learn the particular 
method of thinking used in probability theory. These philosophical questions 
can be discussed during the historical overview: this will constitute the history 
of the philosophy of probability.

Lastly, I would like to emphasize that I consider entropy and information 
to be fundamental notions in probability theory and I would like to suggest 
that teachers of probability theory include some discussions of these notions in 
their courses.
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3. HOW SHOULD PROBABILITY THEORY BE TAUGHT?

The difficulties relating to this question are exactly the opposite of those 
discussed in relation to point 2. Here one can say so much at any particular 
teaching level without restricting oneself that some selection is necessary. 
Putting aside many important questions, I wish to make some remarks only 
about the following three:

A) The question of mathematical precision.
B) Experiments concerning random events.
C) The introduction of the concept of probability space.

A) In general, I advocate reasonable precision in the teaching of mathe
matics because I feel that without precision, mathematics is not mathematics. 
This does not mean that every statement should be proved: some theorems 
can be given without any proof; others can be substantiated by heuristic 
reasoning and only a few need to be proved. Still, we should make each situa
tion very clear so that the students will always know what has been proven 
and what has not. Particular care should be taken not to call a proof what 
is only heuristic reasoning. Similarly, we should clearly distinguish between 
definitions and theorems. These remarks apply to the teaching of any branch 
of mathematics, but I dwell on them because these basic rules are often vio
lated in the teaching of probability theory. If the teacher wants the students 
to understand why precision is necessary, he/she can demonstrate by means 
of well chosen examples where imprecision leads to incorrect results. In gen
eral, well chosen examples ought to be the base of mathematical instruction. 
And no other branch of mathematics has such a great selection of exciting 
and still elementary examples as probability theory.
B) Statistical laws can be illustrated by data from books, newspapers etc., 
but students will be even more impressed if experiments carried out in front 
of (and preferably by) them, supply the necessary data. Some teachers do not 
agree with this approach because they fear that the experiments will not 
produce exactly the results they were expecting (and this can in fact happen 
because of the nature of these experiments). Such a fear, however, is unfounded 
and if the teacher understands probability theory thoroughly he/she cannot 
get into an uncomfortable position. Of course, the teacher has to react fast: 
evaluating unexpected results is always more difficult than explaining prob
lems solved beforehand. The benefit of an experiment conducted in the school 
with the students is so great that I support it regardless of such difficulties. These 
experiments should be planned carefully. For example ,in my talk on TV, I want
ed to do Buffon’s famous needle experiment. I was astonished that, although 
most books on probability theory mention it, none of them provides any practical
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advice as to how to conduct it so that the fundamental conditions will be 
satisfied. In the end, I had to construct a simple mechanism myself for this 
purpose. I had a similar experience with another classical experiment, the 
Galton-desk. I have learned that if one does not conduct this experiment 
carefully enough, the results will differ significantly from what one expects 
because the deflections of the balls into the different rows are strongly inter
dependent. In this case, I had to construct a special device in order to end up 
with the desired result. As far as dice are concerned, I have found the icosa
hedron (made in Japan for quality control purposes) to be the best. As far 
as I know, these are produced in great quantities in Japan. I do not think it 
would be too difficult to produce reliable normal dice for the purpose of 
teaching probability theory. During my television talks, I conducted experi
ments not only with simple dice but also with the kind of bones used by the 
ancient Greeks and Romans. There are, of course, many other simple experi
ments that are suitable for conducting in school: tossing a coin, selecting 
cards from well shuffled decks, roulette, etc. I realized what a great help 
examples derived from games of chance can be when my colleague Dr. Pál 
Révész told me about his difficulties in teaching probability theory in Ethiopia 
where games of chance are forbidden (so that he was advised not even to 
mention them). There are also certain methods employed in quality control 
that can be used for demonstrations in the classroom. For example, in one of 
may talks on TV, I carried out an experiment on a sack of small plastic balls 
using a plastic shovel indented with 100 holes in a square 10x10 arrange
ment. When I put the shovel among the balls, they were attracted to it electro
statically and filled the holes. The balls were of two colors; most were white 
and a small fraction (1/4) were red. Thus the results approximated the Poisson 
distribution quite well.

I would like to point out that the data obtained in an experiment can be ana
lysed in many ways and a particular analysis can lead to much more than an 
understanding of the idea of statistical relations. Specifically, it can lead to the 
concept of independence and other, less obvious concepts related to random 
events. For example, on many occasions I have shown students two sequences 
of zeros and ones, telling them that one was the result of tossing a coin (with 
0 representing heads and 1 tails), and that the other was only an artificial 
random sequence. Both sequences had about 150 elements and the students 
had to guess which one was which. (In general, the artificial sequence was quite 
regular, having no long series of constant ones or constant zeros while in the 
actual random sequence, they did, of course, occur.)
C) Finally, I would like to relate how I recently introduced the concept of
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probability space. At first glance, it would seem that this is only a terminological 
innovation, but I will show that there is more to it.

What is usually called probability space*, namely a triple (Í2, si, P) of a 
non-empty set Q, a a-algebra si of sets contained in fl, and a probability 
measure P on si for which P(Q)= 1, I call an experiment, and the elements 
ct)£ Q are called the possible outcomes of an experiment. Any subset A of Q 
is called an event. An event consists of the possible outcomes contained in it 
as a set. Those subsets of Q which are elements of si are observable events, 
while those that do not belong to si are considered unobservable. As usual, 
I interpret P(A) as the probability of event A. It must be stressed that we 
do not in any way define the probability of unobservable events.

A typical example is tossing two identical dice. In this case, fl consists of 
36 pairs of numbers, (a, b)£Q where läa^6 and l^b^6. si consists of 
subsets A of Q such that if {a, b)£A then (a, b)£A. There are 221 such sub
sets out of the total 236; these are the observable ones.

This example shows that even if ß is finite, it is not always suitable to 
include in si all of the subsets of ß. Of course, if instead of the set of ordered 
pairs (a, b), we take the set of inordered pairs to be ß, then si will be the 
set of all subsets of ß. In general, it is more practical to choose the relatively 
large set of possible outcomes and limit the number of sets having defined 
probabilities.

Thus we arrive logically at the assumption that si has to be an algebra 
of sets, since it is obvious that, if an event is observable then its opposite is 
also observable and, moreover, if two events are observable then the event 
consisting of the outcomes belonging to at least one of these events is observ
able too. (This is not true in quantum mechanics but is true for “classical” 
observations.)

I have tried to introduce the notion of probability space this way in dif
ferent schools at the university and high school level and my experience is 
that students understand this concept more easily if the accent is on observ
ability. 1 he advantages of this method become obvious later: it makes it easier 
to understand general concepts like conditional probability and conditional 
expected value if from the beginning students get used to the fact that the 
system of sets with which a probability is associated is necessarily the largest 
possible one. Many textbooks explain the fact that the probability measure 
is defined on a <x-algebra of subsets in the sample space (instead of all sub

* The following two pages are primarily directed to specialists. The required definitions 
can be found for example in A. Rényi: Probability Theory (Akadémiai Kiadó, Budapest, 
1970). (Gy. Katona)
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sets) by stating that often it is impossible, by pure mathematical reasoning, 
to extend the measure to all subsets. Although this last fact is, of course, true, 
I think that such an explanation is misleading. Usually an extension of this 
sort would be completely meaningless because the extended measure would 
lose its original probability theoretical meaning. I do not want to go into 
detail on this question since it comes up only in higher level courses in prob
ability theory. To go back to the more elementary level, I would like once 
again to emphasize my own experience: the concept of probability (or, more 
precisely, the mathematical structure of probability theory) can be more easily 
understood if, from the beginning, we introduce the idea of the observability 
of those events for which probability is defined.



Variations on a theme by Fibonacci

In music, composers quite commonly compose variants, “variations” on a 
theme. Mozart liked this form very much; the first movement of his Sonata 
in A-major (K. 331) consists of a set of variations, as does the first movement 
of Beethoven’s Sonata in A-flat minor (op. 26). The main characteristic of 
this form is that the composer starts with a simple, basic theme and creates 
variations on it which differ, sometimes quite strikingly, in rhythm and mood 
from their original. No matter how surprising these variations are, the listener 
feels that each particular one existed as a possibility in the theme: it only 
required an ear (i.e., that of a composer) sensitive enough to “hear” it and 
give it life.

In what follows, we will try to follow the example of music-literature by 
introducing a simple mathematical theme — the so-called Fibonacci sequence — 
followed by its numerous “variations”. These variations are based on the dif
ferent characteristics, interpretations, applications and generalizations of the 
Fibonacci sequence.

THE THEME

Let us consider the following sequence:

1,2, 3, 5, 8, 13,21.......

What kind of pattern can we discover in it? It is easily noticed that beginning 
with the third term, every term of the sequence is equal to the sum of the two 
preceding, i.e., 3=1 + 2, 5 = 2+3, 8=3 + 5, 13=5 + 8, 21 = 8+13,.... Seeing 
this, we can continue the sequence:

(1) 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,233, 377, 610, ....

Variation 1. Try to continue the sequence (1) backwards, preserving the 
property that any term is equal to the sum of the two preceding. The sequence
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can be indefinitely extended to the left as follows: to the left of what is now 
the first element of the sequence, write the number obtained by subtracting it 
from the second element of the sequence. Proceeding in this way, we end up 
with a sequence which is infinite in both directions:

(2) -21, 13, -8, 5, -3, 2, -1,1, 0,1, 1, 2, 3, 5,....

Notice that the numbers to the left of zero are the same as those to the right, 
but with alternating sign.

Variation 2. The rule underlying the construction of (1) can be expressed 
in a different way. Starting with the second term of the sequence, write under 
each number the difference between it and its predecessor. In this way, we 
obtain the same numbers in the lower row as in the upper row, but shifted one 
position to the right :

1,2, 3, 5, 8, 13,21,34,...

1 1 2 3 5 8 13 ....
This is also true of (2):

..., —8, 5, —3, 2, —1, 0,1, 1, 2, 3, 5, 8,...
13,-8, 5, -3,2, -1,0, 1, 1,2, 3, 5,....

Variation 3. Sequence (1) is called the Fibonacci sequence in the literature, 
because it first appeared in a mathematical work entitled Liber Abaci (1202) 
by the Italian mathematician Leonardo Fibonacci (=son of Bonacci) (1170— 
1250). Maestro Leonardo (who was called “the Pisan” because of his birth
place) had travelled in the East as a merchant and based his book on the 
work of Arab mathematicians such as Al-Khawarizmi, Abu Kamil and others. 
It is well known that the works of the ancient Greek mathematicians were 
forgotten in the Middle Ages in Europe, and only survived in the works of 
the Arab mathematicians who were also inspired by the mathematicians of India. 
At the time of the Crusades, the forgotten mathematics of the ancients was 
brought to light again in Europe through the works of the Arab mathemati
cians. The first important European mathematical textbook was the above 
mentioned book by Fibonacci. It is hard now to tell how much of it he had 
learned from the Arabs and how much was his own. In his book, there are 
a number of examples (such as sequence (1)) whose sources are unknown. 
We do not know whether Maestro Fibonacci created these or whether he 
took them from other source-books which have not survived. Fibonacci 
presented sequence (1) as the solution of a problem concerning the reproduc
tion of rabbits.
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We will rephrase the problem in terms of the growth of trees (the assumptions 
being more realistic in that situation than with rabbits). Assume that a tree 
grows in the following way:

Each new branch just grows during its first year, but gives birth to a new 
branch every year starting from the second year of its existence. The question 
is: how many branches will a tree planted today as one branch have in
1,2, 3, 4, ... years. The assumed pattern of growth of the tree is shown in 
Fig. 1.

After 5 years
8 branches

After A years
5 branches

11
After 3 years

3 branches

After 2 years

2 branches

After 1 year

1 branch

The tree will have 1 branch in the second year, 2 branches in the third, 
3 in the fourth, 5 in the fifth and 8 in the sixth: writing these numbers in a 
sequence, we obtain (1). Now we can easily see why the rule that every term 
of the sequence equals the sum of the preceding two holds. We can calculate 
the number of branches in any given year if we add the number of branches 
in the previous year to the number of newly grown branches. This latter num
ber is equal to the number of branches which are at least 2 years old since 
only from these can a new branch grow.

Variation 4. In a new housing development, the apartment houses are to 
be painted so that each level (including the ground floor) will be either blue 
or white. For aesthetic reasons, no two consecutive levels are to be blue. In 
how many ways can a particular building be painted, given that it has a fixed 
number of stories? Fig. 2 shows all the possibilities for one, two, three and 
four-storey houses.
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one -storey houses

□ □
□ □
□ □

□ □
□ □ □ □

two-storey houses

three-storey houses

□ □
□ □
□ □
□ □

four-storey houses

Fig. 2

There are two, three, five, and eight patterns in case of one, two, three and 
four-storey houses, respectively. As the number of levels of the building 
increases, the numbers of possibilities are as follows:

(3) 2, 3, 5, 8,...

which corresponds to the Fibonacci sequence, without its first term. Is the 
sequence true for taller buildings, for example are there 13 possibilities for a 
5-storey building? The answer is yes and this can be demonstrated as follows. 
In a 5-storey building, the fifth level can be either blue or white. Keeping in 
mind the constraint that “no two consecutive levels can be blue”, there are 
as many patters in which the 5th level can be painted white as there are ways 
of painting a 4-storey building (namely 8), and there are as many patterns in 
which the 5th level can be blue as there are patterns in which the 4th level of 
a 4-storey building is white, which is exactly the number of patterns for which 
the painting of a 3-storey building (namely 5). Hence, there are 8+5=13 
ways of painting a 5 level house to comply with the restriction of “no two blues
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together”. Similarly, one can see that the number of patterns corresponding 
to six-storey building is 8+13=21, to seven-storey building 13 + 21 = 34, 
etc. The solution of the problem is the Fibonacci-sequence.

Variation 5. A TV-station has the policy of broadcasting a particular pro
gram (for example, a mathematical talk series for laymen) on certain given 
days of the week and not on others. How many different weekly schedules 
can be made if this program is not to be shown on two consecutive days? 
Notice that although this variation is quite similar to 4, it is not identical 
to it. If we assign the seven levels of a seven-storey building to the seven days 
of the week (so that Sunday corresponds to the ground floor, Monday to the 
second storey, etc.) and the color blue to the above-mentioned program, then 
it is true that every weekly schedule constructed to satisfy the given condition 
will correspond to a possible color pattern of the 7-storey building, but the 
converse is not true. If, for example, both the ground and the seventh floors 
are blue, that would correspond to having the program screened on Sunday 
and Saturday, which is not allowed. The possible schedules are shown in 
Fig. 3, where the days of the week are represented by the numbers 1 to 7 
written around the edge of a circle, and the days on which the program can 
be shown are circled. Counting all of these we end up with a total of 29. This 
number is not in the Fibonacci-sequence; still, this problem has a connection 
to the Fibonacci-numbers. Let us see what happens if we want to air the pro
gram on a 3 or 4-day schedule (instead of the 7-day basis). Let us reformulate 
the problem illustrated by Fig. 3 as follows. The guests at a banquet are to 
be seated at round tables. All tables accommodate the same number of people 
and the seats are numbered. How many ways are there of assigning seats to 
guests if no two women can sit next to one another? In Fig. 4 we can see the 
possibilities for tables seating 2,3,4,5 and 6 guests. The women guests sit in 
the places marked by circled numbers. According to Fig. 3, there are 29 
possible seating patterns in the case of a table for 7. For tables seating 2, 3, 4, 
5, 6, and 7, the numbers are:
(4) 3, 4, 7,11, 18,29,

respectively. In order to establish the connection between (4) and the Fibonacci 
sequence, let us investigate why 11 is the number of possible ways of seating 
five around a table.

Seat number 1 can be occupied by a man or a woman. If the person is a 
man the number of possible seating arrangements for the remaining four 
places is the same as the number of ways a 4-storey building can be painted 
white and blue, i.e., 8. In the case where a woman is seated in the first seat,
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Seating patterns for seven around a table

Fig. 3

she will have to be seated between two men; the remaining two places will 
give as many different possible arrangements as there are patterns for the 
painting of a 2-storey building, i.e., 3. The total number, then, is 8+3=11. 
Similarly, one can see that the number of possible seating arrangements at 
a table for 6 is 13 + 5=18, that at a table for 7 it is 21 + 8 = 29, etc.

Sequence (4) is therefore derived from the Fibonacci sequence by adding to 
every term (from the third term on) the one before the preceding 2+1 = 3, 
3+1 = 4, 5 + 2=7, 8+3=11, 13 + 5=18, 21 + 8=29, etc. If we have a table 
for 10, there are 123 ways of seating guests.

We should note that the case of a table for one can be included in the sequence 
only under the condition that no woman can sit alone; then the general rule 
applies to give 1 + 0=1 possible seating pattern. The rule for the pattern 
of seatings can be explained to have the meaning that the men are to entertain 
the women during supper and that that is why we prescribe that a man must 
sit on the right and left of each woman. Whoever sits at a table for one will 
not have any neighbour (or we could say that he his own neighbour). Accord
ingly, a woman cannot sit by herself.

Although this problem has led us to the Fibonacci numbers, its solution is
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not simply constituted by the terms of a Fibonacci sequence but rather by the 
sums of two of its terms two places apart.

Variation 6. Let us set out again the sequence we arrived at in Varia
tion 5.

(5) 3,4, 7,11,18,29, 47, 76, 123,....

Looking at the sequence of differences between each two consecutive terms, 
we realize that the resulting sequence has the same property as the Fibonacci 
sequence, namely that every term is equal to the sum of the two preceding 
ones:

7 = 3+4, 11=4+7, 18 = 7 + 11, 29=11 + 18,

47 = 18+29, 76 = 29+47.

Why? What is the connection between this feature of (5) and its origin in 
sequence (lj? To see this, it will be useful to adopt the usual mathematical 
notation for sequences. Denote by Fn the n-th term of sequence (1) so that

Fx =1, F2 = 2, F3 = 3, F4 = 5, Fb = 8,

and so on.
According to the definition of the Fibonacci numbers we have found that 

for every n

(6) F„ = F„_1+F„_2,

holds. Denote by G„ the number of possible seating arrangements around a 
table for n, i.e.,

Gx = 1,- G2 = 3, G3 = 4, G4 = 7, G5 = 11, etc.

Previously we saw that

(7a) G, = %+%_,:

We want to show that

(7b) G, = G,_i + Gn_:.

From (6) and (7a), it follows that

Gn = Fn+Fn-i = (Fn-1 + F„_ 2)+(Fn _ 3 + F„_4) =

= (7rn-i + Fn_3)+(Fn_2+F„_4) =

— Gn—1 *F Gn _ 2 •
Variation 7. We have already arrived at two different sequences where every 

term is equal to the sum of the two preceding it. Let us now try to review all
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such sequences. Let us call a Fibonacci-type sequence any sequence in which 
any term from the third term on is the sum of the two preceding it. If we denote 
by an the n-th term of the sequence (n= 1,2, ...), then the above condition 
can be written as follows

(8) a„ = a„_i+a„_2 (« = 3,4,...).

Obviously, the first two terms of such a sequence can be chosen arbitrarily 
since (8) does not constrain either the first or second terms. On the other hand, 
once the first two terms are decided on, the rest of the sequence is determined 
and the whole series can be calculated. For example, by choosing 1 and 6 to 
begin the sequence we arrive at the sequence

(9) 1,6, 7, 13,20, 33, 53, 86,....

Of course, a Fibonacci-type sequence is also determined if any two terms 
other than the first two are given.

For example, let’s find the Fibonacci-type sequence having 1 as its first 
term and 9 as its fourth. Let x denote the second term. The third term is 1 + x, 
the fourth x+(l + x)= l + 2x. If our condition that the fourth term is 9 is 
to be met, the equation 1 + 2x=9 must be satisfied; hence x=4. The sequence 
we were looking for is:
(10) 1,4, 5, 9, 14,23,....

Variation 8. Let us see which of the simple sequences one learned about in 
school can be classified as Fibonacci-type sequences. It can quite easily be 
seen that an arithmetic sequence can be of the Fibonacci-type only if all its 
terms are equal to 0 since an arithmetic sequence has the property that the 
difference between any two consecutive terms is constant, while the differences 
between any two terms of the Fibonacci-type sequence (as we have seen in 
Variation 2) result in the same sequence (shifted to the right by one posi
tion).

Let us now examine if a geometric sequence can be considered to be a 
Fibonacci-type sequence. The geometric sequence has the property that the 
quotient of any two consecutive terms is constant.

If ax, a2,..., an,... is a geometric sequence, and q is the quotient, then 
ű2=űi2, az=a2q=alq2, and so on; in general,

(11) an =a1qn 1 {n = 1, 2,...).

If a geometric sequence (a„) is of the Fibonacci-type as well, then ű3=Ui+ű2> 
ű4=ű2+ű3... , an=ű„_1-f ű„_2 should also hold. In other words, according to
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equation (11) the following relationships:

(12) ax q2 = ax+axq 
axq3 = axq+axq2

axqn~1 = axqn-z+axqn-z

must be satisfied. Any one of these equations beginning with the second can 
be derived from the preceding one by multiplying the right and left by q. If, 
therefore, the first equation in (12) is true, the rest will be true as well: our 
result, then, is that a geometric sequence will be of the Fibonacci-type if and 
only if

(13) axq2 = ax+axq.

Assuming that ax is not zero, we arrive at

(14) q2 = 1 + q.
The necessary and sufficient condition for the geometric sequence (11) to 
be of Fibonacci-type is that q satisfy (14). Equation (14) has two roots:

(15) qx =-----— and q2=-

If, therefore, qx and q2 are numbers as defined in (15), then the geometric 
sequences an=axqx~x and an=axql~z are also Fibonacci-type sequences 
where ax is an arbitrary number.

Variation 9. Since /3 is irrational, qx and q2 will also be and one will obtain 
Fibonacci-type sequences with non-integer terms. If, for example, ax=Y5+3, 
then the Fibonacci-type sequence an=axqnx~x {n— 1, 2,...) is as follows:

/5 + 3, 2/5+4, 3/5 + 7, 5/5 + 11,....(16)

Note that each term of this sequence is calculated by multiplying the appro
priate term of the Fibonacci-type sequence 1, 2, 3 by /5 and by adding to the 
result the appropriate term of the Fibonacci-type sequence 3, 4, 7, 11,... .

It can easily be seen that multiplying the terms of a Fibonacci-type sequence 
by a constant will result in a Fibonacci-type sequence, and that adding two 
arbitrary Fibonacci-type sequences also produces such a sequence. In general, 
if a„ and bn are two arbitrary Fibonacci-type sequences, and A and B are 
arbitrary numbers, then the sequence

(17) Cn = Aa„+£bn (n = 1,2,...),
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will also be of the Fibonacci-type. That is,

if an = an.x+an.2i and = h„-1+h„-2, 
then from (17) we can conclude that:

(18) C„ = Aa„+Bbn = y4(a„_1+a„_2)+B(dn_1+i>„_2) =

= v4an_1+Bi)„_1+y4a„_2+Bb„_2 =

— -1 "b - a •

This means that, with the help of two appropriately chosen Fibonacci-type 
sequences, any Fibonacci-type sequence can be generated. Thus the follow
ing statement is true: any Fibonacci-type sequence (an) can be written in the 
form:

(19) an = AFn+BGn,

where (F„) is the sequence (1, 2, 3, 5, 8) and (Gn) is (1,3,4,7,11,...).
If ax and a2 are given, we can choose constants A and B such that (19) will 

hold for n= 1 and n=2. To the end, A and B should be chosen to satisfy 
the following two equations:

(20) ax = A+B,

#2 = 2A + 3B.
The solutions are:

(21) A — 3 ax—a2i

B — a2 2ax.

Our result, then, is as follows: any arbitrary Fibonacci-type sequence can be 
written in the form

(22) an = {3ax—a^Fn-\-{a2—2a^)Gn.

Formula (22) also shows how, with the help of the base-sequences F„ and Gn, 
an arbitrary term of a Fibonacci-type sequence can be expressed in terms of 
its first two terms. For example, according to (22), sequence (10) whose first 
two terms are ax= 1 and a2=4, can be written as:

(23) an = 2Gn-Fn.

Thus, for example, the 5th term of the sequence an=2Gn— Fn=2-11 — 8= 
= 14, which is indeed the fifth term of the above mentioned sequence 
1,4, 5, 9,14,23.......
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Similarly, any Fibonacci-type sequence an can be expressed with the help
j/J-j-1

of the Fibonacci-type sequences g”+1 and ql+1, where qx=—-— and q2=

(fs-1 )= y------- J . For the Fibonacci-sequence F„ itself we get

F = Tin+1-^+1
V'5

i.e.,

F„ = (l + /5)"+1-(l-l/5)n+1
2”+1)/5

This formula is called the Binet formula.

Variation 10. Let us look at the quotients of consecutive terms in the 
2 3 5 8

Fibonacci-sequence (1): ——2, —= 1.5, —= 1.666... , —=1.6. If we continue

this sequence, the quotients alternately decrease and increase but with smaller 
and smaller fluctuations.

It can be shown that the numbers 71 + 1 approach the limit

(25) ?i =
/5+1 1.6180... .

There are several ways to demonstrate this fact.
As we have shown, qx satisfies q\=\ + q1. Dividing this equation by qx, 

we get

(26)

On the other hand, from Fn+1= Fn+ Fn_x it follows that

(27)

and therefore

(28)

Fn+i = 1+-
1

fefc)

From (28), one can see that the quantities —qx are alternately positive

and negative numbers, and moreover, that if we denote by dn+1 the absolute
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value of ———qx, then (considering that
F„

(29) dn
<h

This means that the deviation dn+1 is less than djq1. Since qx= 1.6...> 

every term of the sequence dn is smaller than the previous one divided by

Therefore d„ will be arbitrarily small if n is large enough, and so, the limit 

of — will really be qx as n approaches infinity.

yj+\
Variation 11. Where is the number qx= familiar from? This is in

fact a famous number. If an arbitrary straight line segment is divided into 
two segments so that the longer is the q-th part of the whole, then, after designat

ing the length of the whole segment to be 1, the length of the parts will be —

for the longer, and 1------=—-----  for the shorter.

Since qx— lH-----, we can write
<h

(30) —: 1 = ——, i.e., 
<h <h <h

1
if a segment is divided into two in such a way that the greater part is —

Qi
of the whole, then the greater part is to the whole as the smaller part is to 
the greater. This kind of division was called golden section in ancient Greek 
mathematics.

The first application of the golden section first appeared in connection with 
the construction of the sides of a regular decagon. The side of a regular decagon, 
as can be seen from Fig. 5, is the ^-th part of the radius of the circumscribed 
circle.

It can also be seen from this figure that the radius of the circle and the 
side of the decagon cannot be measured in terms of each other’s length, i.e., 
the proportion resulting from the golden section is an irrational number.

j/J-f 1
(This can also be seen from the formula qx=—-—, since 5 is not a perfect 

square.)
We do not have space here to deal with the importance of golden section,
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but we should note that it played an important role in classical Greek art. 
One can see this proportion which, so it seems, is exceptionally pleasant to 
the eye, in many buildings and sculptures.

Variation 12. Let us investigate the following practical problem: at what 
speed does a car run most economically, i.e., at which speed is the car’s gaso
line consumption per 100 km the smallest possible. If this consumption (i.e., 
the amount of gasoline in litres needed to cover a distance of 100 km) is 
depicted as a function of speed (measured in km/hour) a graph such as that 
set out in Fig. 6 results.

This curve has one minimum (lowest point); it decreases until that point,

150 km

Fig. 6
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and after that it increases. We want to find the value x, at which the rate of 
consumption is the smallest, i.e. we want to find the lowest point of the curve. 
Of course, we do not have the curve but we could measure the consumption 
for different speeds. This would be quite a lengthy procedure, especially if 
we want to measure accurately. Therefore it is desirable to find the most 
economical speed with a prescribed accuracy while making the smallest pos
sible number of measurements. It can be shown that if we want to determine 
the most economical speed between bounds a and b by making n measure
ments with the smallest possible margin of error, then, as a first step, the 
given interval should be divided into Fn equal parts. The points where the 
first two measurements are taken are the F„_x-st and the F„_2-nd division 
points; after this, the process is repeated using the new interval defined by the 
two division points mentioned. (If the number of measurements is large 
enough, this process results in a golden section.) For example, let us assume 
that we want to find the optimal speed in 5 steps. Let us start from an interval 
which surely includes the most economical speed such as the interval 0 km/hour- 
160 km/hour. This interval should be divided into F6=8 equal subintervals 
and we will take the first measurements at points Fs=3 and F4=5, i.e., 
60 km/hour and 100 km/hour. Let us assume that the measured consump
tions at these speeds were /(60) and /(100), respectively. It can easily be seen 
that if /(60)^/(100), then the optimal speed is between 60 and 100 km/hour, 
while if /(60)^/(100), it should be between 0 and 100 km/hour. Assume that 
/(60)</(100). There can now only be 4 more measurements made and accord
ingly the interval 0-100 should now be divided into 5 equal parts. According 
to the method prescribed, measurements are to be taken at the second and 
third division points, since F2=2, F3=3.

The second division point is 40 km/hour. The third division point is 
60 km/hour, but we already know the value of the function there. Assume 
that we have measured /(40), and that /(40)</(60). We can accordingly be 
sure that the optimal speed is between 60-80 km/hour. We now need to carry 
out only one more measurement. Dividing the segment 60-80 km/hour into two 
(since F2=2), we will measure the gasoline consumption /(70) at 70 km/hour. 
If the result is /(70)</(60), then we will know that the optimal speed is 
between 70 and 80 km/hour. It can be proven that the best method for deter
mining the desired optimal speed in five measurements is the one given above.

The preceding problem belongs to the field of mathematical search theory 
and as we have described, its solution leads to the Fibonacci sequence.* The

* This interesting application of the Fibonacci numbers was discovered by I. Kiefer. See 
Proceedings of the American Mathematical Society 4 (1953) 502.
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practical meaning of the function whose maximum (or minimum) we want to 
determine is, of course, irrelevant. If, for example, we want to find the optimal 
speed of rotation for a power loom or the most effective investment plan we 
should go about doing so in the same way.

Variation 13. Let us start with the well-known Pascal triangle:
1

1 1 
1 2 1 

13 3 1 
1 4 6 4 1 

1 5 10 10 5 1 
1 6 15 20 15 61 

1 7 21 35 35 21 7 1

Fig. 7

As is generally known, the A>th element (k=0, 1,...) of 
(n=0, 1, 2, ...) of the Pascal triangle gives the number of ways
k objects out of n, i.e., the binomial coefficient . The

the n-th row 
one can select
distinguishing

feature of the Pascal triangle is that any element in a row is the sum of the 
two consecutive elements immediately above it in the preceding row (e.g., 
21 = 6+15).

This rule is very similar to the rule generating the Fibonacci sequence. It 
can in fact be shown that there is a connection between the Pascal triangle and 
the Fibonacci numbers.

If we rewrite the rows of the Pascal triangle so that every number is writ
ten one row lower than its neighbour on the left in the original version, i.e., 
the elements of one original row are placed according to the knight’s moves 
in chess in the new arrangement (two to the right, one down), then the row 
sums (the sums of the elements in each row) of the resulting “skewed” Pascal 
triangle are the Fibonacci numbers (see Fig. 8)

1
1

1 1 
1 2 

1 3 1
1 4 3
15 6 1

1 6 10 4
1 7 15 10 1

1 8 21 20 5

row-sums: 1 
1 
2 
3 
5 
8

13
21
34
55

Fig. 8
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For example:

= 1+7+15 + 10 + 1 = 34.

In general we can write:

ód

Relation (31) can be justified by the generating rule of the Pascal triangle 
or by the combinatorial meaning of the binomial coefficients and the com
binatorial interpretation of the Fibonacci numbers (see Variation 4). Speci
fically, it can easily be demonstrated that, in the case of an n-storey building,
the number of possibilities of having k levels painted blue is equal to ^ ^ j
and therefore (31) holds.

Variation 14. Let us return to sequence (2). Here every even number is 
preceded by two odd ones. Taking into account the rule for calculating the 
sequence and the fact that the regularity just mentioned is true for the begin
ning of the sequence, we see that the sequence can be continued to any length 
so that every two consecutive odd terms are followed by an even one which 
in turn is followed by two odd ones, etc. Let us investigate the divisibility 
by 3 of sequence (2). Write below every term the remainder after dividing 
by 3:
(32) -21 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13 21 34 55 

0 1 12 02 210112022 1 0 1 1.

Clearly, in the second row the 8-term sequence 0 1 1 2 0 2 2 1 is repeated 
over and over again, i.e., this sequence is periodic. If now we look for the 
sequence of remainders when dividing by 4, we will obtain a similar result:

(33) -21 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13 21 34 55 89 
3 1 01 12 310112310 1 1 2 3 1.

We can show that if Fibonacci numbers are divided by any number N, the 
remainders always create a periodic sequence. In other words, for every integer 
N, one can find a number dn such that Pn+dN~F„ is divisible by N for all n. 
(d2=2, ds= 8, di=6 as we have seen.)

The proof is quite simple. Any term of the remainder sequence is one of 
the numbers 0, 1, ..., N— 1. Any remainder can therefore have one of N 
possible values, so there can be N2 possible pairs of consecutive terms. But 
the same rule applies to the remainder sequence as to the Fibonacci-numbers,
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meaning that any term is equal to the sum of the two preceding terms if that 
sum is smaller than N. If the sum is greater than N, then subtracting N from 
it will give the next term of the sequence. (This is expressed by saying: every 
term in the remainder-sequence is equal to the sum “modulo JV” of the two 
terms previous to it.) Therefore the sequence of the remainders still has the 
property that the whole sequence is determined by any two given elements. 
For example, to get the sequence of remainders resulting from division by 7, 
we start with the first two terms: (1,2) and calculate any term by adding its 
two predecessors, checking whether this sum is greater than or equal to 7 and 
subtracting 7 if this is the case. The sequence will be:

(34) 1, 2, 3, 5, 1, 6, 0, 6, 5, 4, 2, 6,1,0,1,1, 2, 3, 5, 6, 0,...

If we now consider a part of a remainder-sequence (after division by N) 
consisting of N2+ 2 members and look at consecutive pairs of terms, we will 
find iV2+1 such pairs, not all of which can be different since there can be 
N2 possible pairs out of N numbers. If, on the other hand, the same pair 
appears in two places in the sequence, then the sequence will continue the 
same way from both places. We have now proved that the sequence of the 
remainders resulting from the division by N of every term in a Fibonacci-type 
sequence* is periodic with a period of at most N2. Moreover, if we take into 
account the fact that the pair 00 cannot appear in the sequence of remainders 
(for that, it would be necessary for every term including the first, i.e., 1, to 
be divisible by N) then the maximum length of a period will be N2— 1, i.e., 
dN=kN2— 1. (Note that d2=3=22—l and d3=8=32— 1.) In the example of 
division by 7, we have determined the place where the pair 1, 2 is first repeated. 
We see that d7= 16. (Notice that d7 is not equal to l2—1 = 48, but is a divi
sor of it.)

Since 0 appears in sequence (2) and the sequence of the remainders after 
division by N is periodic, in the latter sequence zero appears infinitely many 
times. This then means that, given any N, there are infinitely many terms in 
sequence (1) which are divisible by N.

An interesting problem is that of the divisibility among the terms of the 
Fn -sequence. We give here the most important result without proof; the num
ber F„ is divisible by the number Fm (1 ^m<«) if and only if n+1 can be 
divided by m+ 1. It follows that Fn can be a prime number only if zi+1 is 
a prime number or if n=3. This does not mean that if p is prime, then F x

* Many other interesting facts concerning Fibonacci-numbers can be found in Chisla 
Fibonacci by N. N. Vorobjov (2. edition, Nauka, Moscow, 1964, 1-70.).
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is definitely prime; moreover, the following is still an unsolved problem: are 
there infinitely many prime numbers in a Fibonacci sequence?

Let us note that the proof given can be applied to any sequence consisting 
of the numbers 0, 1, N—l, where every term is calculated from a fixed 
number of preceding terms in accordance with a specific rule and that all such 
sequences are necessarily periodic. This fact plays an important role in the 
generation of the so-called pseudo-random numbers. When there is a need for 
“random” numbers for the Monte-Carlo method in calculations by computer, 
these “pseudo-random” numbers are what the computer generates. The rea
soning set out above shows that an algorithm which creates a new term of 
this “pseudo-random” sequence by accomplishing some operations on a fixed 
number of preceding terms will necessarily generate a periodic sequence. There
fore it should be kept in mind that it is necessary to have a large enough 
period in order to be able to use the sequence as “random”.

Variation 15. Consider now the partial sums of the Fibonacci numbers:

Sx = 1

S2 = 1+2 = 3,

*S*3 = 1 +2 + 3 = 6,

154 = 1 + 2 + 3 + 5 = 11,

155 = 1 + 2 + 3 + 5 + 8 = 19,

Sq — 1 + 2 + 3 + 5 + 8 + 13 = 32, etc.

If we now take the resulting sequence

(35) 1,3, 6,11,19, 32,...

and add two to each of its terms, we will end up with a sequence of 
3, 5, 8, 13, 21, 34,... which is the Fibonacci sequence from its third term on. 
This can be represented by the following formula:

(36) Sn — Fn+2 = 2.

The sequence S„ is not of Fibonacci-type; rather, its generating rule is:

(37) Sn = 5'„_1 + 5,n_2+2,

that is, every term exceeds the sum of the two preceding terms by two. What 
if we leave out every second term of the Fibonacci sequence:

(38) 1,3, 8,21,55, 144,....
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What is the generating rule in this case? It can be seen that, from the third 
term on, every term is equal to the difference between the immediately preceding 
term multiplied by three and the second preceding term (i.e., 8=3-3—1, 
21 = 3-8—3, 55=3 • 21 — 8, 144=3 • 55—21, etc.). If Hn denotes the w-th term 
of sequence (38), then

(39)

(39) is a special, recursive relationship. An algorithm is called recursive if it 
prescribes how to calculate any term of a sequence from some preceding 
terms. Moreover, (39) is linear as well since it gives the rule for calculation in 
the form of multiplication by fixed coefficients and addition. The following 
sequence, for example, results from a nonlinear recursion:

(40) 2, 4, 8, 32, 256, 8192,...

Here every term is equal to the product of the two preceding terms. The 
n-th term of (40) is 2Fn where Fn is the n-th element of the Fibonacci sequence.

Recursive algorithms have special importance because of the fact that a 
number-sequence which can be calculated by a recursive algorithm can be 
programmed very easily. The computer has only to repeat the same simple 
program using different numbers. Such programs are called cyclic programs.

FINAL CADENCE

These “variations” on the Fibonacci numbers have led us to many interesting 
problems in algebra, number theory, combinatorics, geometry, difference and 
differential equations, search theory, recursive algorithms and the Monte- 
Carlo method. The sequence of variations could be continued but we think 
this has been enough to get across the idea that a simple mathematical problem, 
pursued persistently, can offer a view of many topics in modern mathematics, 
just as a simple tune frequently has more to it than one would have thought 
at the first hearing.



The mathematical theory of trees*

INTRODUCTION

The aim of this lecture is to introduce you to the mathematical theory of 
trees and to give an overview of its many possible applications (in algebra, 
information theory, operation research, chemistry, biology, etc.).

In the title, I have used the adjective “mathematical” to avoid any mis
understanding, although it might have been even better to use the title “The 
theory of mathematical trees”, since the “trees” about which I am going to 
speak are mathematical objects, graphs of a certain type. The theory of trees 
is a chapter of graph theory.

V. W. Rouse-Ball in his famous book “Mathematical recreations and essays” 
[1] (first published in 1892) devoted a whole chapter to this subject (see [1], 
pp. 260-262) and called them “geometrical trees”. Considering what is meant 
in the present day by the term “geometry”, graphs and especially trees do 
not belong to the field of geometry, notwithstanding the planar geometrical 
representation of graphs (with figures consisting of points (“vertices”) and 
arcs (“edges”) connecting certain pairs of points). In spite of these, a graph 
is not a geometrical object since the whereabouts of the points on the plane is 
unimportant; what counts is which pair of points are connected. Therefore 
the three drawings in Fig. 1 represent the same graph.

Fig. 1

* This is the text of the “Rouse-Ball Lecture” given in Cambridge on April 30, 1968.
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At one time, graph theory was considered a branch of topology, but are 
connected by a path. A connected graph is said to be a tree if it contains no 
cycle.

Obviously, any two vertices of a tree are connected by one and only one 
path. The length of the longest path in a graph is called the “diameter”. A graph 
with no cycles can still be unconnected; in such a case, it consists of con
nected parts called “components” which are all, of course, trees. A graph 
with no cycles is said to be a “forest”. Every connected graph having n ver
tices contains trees of «-vertices called spanning trees of the graph. If the 
graph is not a tree, then it contains at least three such trees.

The nomenclature “tree” was introduced into the literature by A. Cayley in 
one of his first papers [2] in 1857. There followed three other papers [3], [4], 
[5]. The first important findings concerning trees were given by Cayley, the 
development of work on the theory of trees begun at Cambridge University. 
However, the notion of the tree is older. For example, ten years before Cayley, 
in 1847, Kirchhoff had investigated trees in connection with the study of 
electrical networks.

Family trees were common in the 17th century, and probably even before. 
Looking even farther back, the first mathematical book published in Europe 
in the Middle Ages, Fibonacci’s work of the 13th century contained a problem 
concerning the multiplication of rabbits which led to the famous sequence 
1, 1, 2, 3, 5, 8,... subsequently named after the author. This problem can 
be interpreted as a question of counting the terminal nodes of certain trees. 
(See Fig. 2.)

We will return to this problem when investigating the connection between 
trees and branching processes.

Fig. 2
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ENUMERATING PROBLEMS RELATING TO TREES

The number of the vertices of a tree is called its order. The simplest theo
rem on trees is the following: the number of edges (N) of a tree with n ver
tices is n— 1. (See Fig. 3 where trees with 1, 2, 3, 4 and 5 vertices are shown.)

d)b)a)

n =3 
N =2

n=2 
N = 1

n =1 
N =0

o

e n -L 

N = 3

o

n =5 
N = 4

Fig. 3

The proof can be given quite briefly. Choose an arbitrary vertex of the 
tree and call it the tree’s root. Let the numbers 1,2, ...,«—1 denote the 
other vertices. Assign the same number to every edge as denotes the end point 
of the path starting from the root and ending with the particular edge. Thus 
every edge is enumerated and every one of the numbers 1, 2,..., n— 1 has 
been used exactly once (since every vertex is connected to the root by exactly 
one path). Hence the number of edges is n— 1.

The first non-trivial question concerning trees (phrased and answered by 
Cayley) is this: how many different trees can exist with a given number of 
vertices? First of all, when are two trees considered to be different? There 
can be two meaningful answers to this question, one when the vertices are 
assumed to be distinguishable, by assigning numbers to the vertices of the trees, 
and the other when the vertices are indistinguishable. Using either assump
tion, there is no difference for n= 1 and n=2 in the number of distinct trees: 
there is only one tree of one vertex and one of two vertices (see Figure 3a



108 THE MATHEMATICAL THEORY OF TREES

X »

and 3b). If the vertices are numbered, then there are three different trees 
with three vertices, while they are all the same if the vertices are not labelled.

Let us denote the number of trees with n labelled vertices as C„ (for brevity 
we will call these labelled trees). Cayley proved that

C„ = nn~\
that is

Cl = l-1 = 1, C2 = 2° = 1, C3 = 31 = 3, C4 = 42 = 16, etc.

The labelled tree of 16 vertices can be derived from the two types of trees 
shown in Fig. 3d as follows: the first type (having one path of length 3) can 
be numbered in 12 ways (each of the 24 permutations gives the same tree as 
the reversed permutation); the second type can be labelled in 4 ways depending 
on the numbering of the center. Prüfer [6] gave the most elegant proof of 
the Cayley theorem. The main idea behind this proof is to use a sequence of 
n—2 numbers each term of which is one of the numbers 1,2,...,«. One such 
sequence is called the Prüfer code word of the tree. Since there are nn~2 such 
code words, it is enough to show that there exists a bijective correspondence 
between the numbered trees with n vertices and the Prüfer code words. This 
fact can be demonstrated in the way that the coding/decoding is carried out. 
Before I give the rules for coding and decoding, two simple notions should 
be introduced. The degree (valency) of a vertex P of a graph G is the number 
of edges in G one of whose endpoints is P. A vertex P of degree 1 is said to be 
a “terminal vertex” of the graph. An edge with at least one endpoint being 
terminal is called a terminal edge. A tree of at least 2 vertices has at least 2 
terminal vertices. Now we can turn to the proof of Cayley’s theorem given 
by Prüfer. The coding algorithm is as follows:

a) Let us take the terminal vertex labelled with the smallest number (no. 3), 
remove it from the tree along with the terminal edge leading to it and write 
down the index of the other endpoint of this edge (no. 4) as the first digit of 
the code word.

b) Repeat a) with the remainder of the tree until there remains a graph of 
only 2 vertices, then stop. Fig. 4 shows an example.

Prüfer code word. 
44112

2
Tree

Fig. 4
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It is easy to see that this procedure is uniquely reversible; thus the tree can 
be reconstructed from the code word.

The algorithm for decoding is as follows: write under the code word in 
increasing order those numbers from 1, 2,n which do not appear in the 
code word. Let us call the resulting sequence an anticode. Connect the vertex 
numbered with the first digit in the code word to the vertex labelled with the 
first term of the anticode word. Drop these digits, if the deleted part of the 
word is not repeated anywhere else in the code word, write it in the anticode 
at the appropriate place (i.e., preserving the increasing order of this sequence). 
Repeat the procedure with the new code word and anticode until the code 
word disappears. Finally, connect the two points having as indices the two 
remaining digits in the anticode.

For an example, see Fig. 5.
Prüfer code word: 6233 
Procedure for decoding:

6233 233 33 3
145 456 256 56 36.

The corresponding tree is:

Fig. 5

From this construction, it can be seen that if vertex k of the tree has degree 
d, then k will appear in the Prüfer code word of the tree exactly (d— 1) times; 
accordingly, only indices belonging to terminal vertices will not be in the code 
word.

A complete graph with n vertices, has nn~2 labelled spanning trees.
A tree is said to be rooted if it has a distinguished vertex: its root. It fol

lows from the Cayley theorem that the number of rooted trees with n labelled 
vertices is it"“1.

The enumeration of unlabelled trees is more difficult. Cayley solved this 
problem as well. The nine possibilities for an unlabelled tree of 5 vertices are 
shown in Fig. 6:
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Y
1 2 3 4 5 6 7 8 9

Fig. 6

The above-mentioned result arrived at by Cayley was applied by Rouse-Ball 
(see [1]) to the following question: how many ways can n pairwise non-inter
secting circles be arranged?

For example, in the case of n=3, there are four possibilities which are 
shown in Fig. 7.

o o op) o

Q

Q

Ö

Fig. 7

Rouse-Ball showed that the number of possibilities for n circles is equal 
to the number of unlabelled trees with n+ 1 vertices (i.e., for n= 3, this 
number will be 4). This fact can be seen from the following construction. Take 
any one of the possible configurations of n circles. Include this configuration 
in a big circle and consider each of the n+ 1 circles to be a vertex of a graph. 
Connect two vertices if one of the circles is contained in the other without a 
third between them. The root is the circle containing the whole configuration. 
The four possible arrangements of three circles and their corresponding trees 
can be seen in Fig. 7.

As Rouse-Ball showed, it follows from Cayley’s result that if we number 
n circles, the number of possible configurations is («+1)"-1. For example, 
if n=3 (see Fig. 7), the 4 configurations can be labelled in a total of 6, 6, 3 
and 1 ways, and

6 + 6 + 3 +1 = 16 = (3+ l)3-\
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STATISTICAL THEORY OF TREES

How many terminal vertices can a tree with n vertices have? At first glance, 
the answer to this question would seem to be trivial. This number t is always 
^2 and ^n— 1, and these extreme cases (a path or a star) are just as pos
sible as any of those between. However, the question is not yet answered thus: 
in fact, if n is very large, the cases when t= 2 or t=n— 1 will be relatively 
rare among the very many possibilities (in case of numbered trees as we have

already seen there are nn~2). So, t=n— 1 in n cases while t=2 in — cases,

and these numbers are quite small compared to nn~2 (as can be shown by 
means of the Stirling formula). Let us now modify the question: how many 
numbered trees are three with n vertices having exactly t terminal vertices? 
What is the number of terminal vertices on most of the (labelled) trees with n 
vertices? This last question can be phrased in another way: if the nn~2 distinct 
(labelled) trees with n vertices are put into a big hat, and if one is taken out at 
random and its terminal vertices are counted, what can we say about the 
approximate possible value of this number? Or: approximately how many 
terminal vertices does a typical tree of n vertices have?

A few years ago, I published [7] the solution of this problem. The answer 
to the question set out above is that the number of terminal vertices of most 

n
trees is approximately —, where e is the base of the natural logarithm

e
(e=2.7182...); that is, 36.8% of the vertices of a typical tree are terminal 
vertices. Similarly we can ask: how many vertices of degrees d does a typical

tree with n vertices have? The answer is: approximately ----------- ; that is,
e(d- 1)!

there are approximately — vertices of degree 2, — for degree 3, — for
e 2e 6e

degree 4, etc. Note that y-----------= 1.
d=i e(d— 1)!

This means that the degree minus 1 of the vertices of a typical tree follows 
a Poisson distribution with a mean equal to 1. About the average degree: it

2
is easy to see that this is always 2-----. Indeed, one can easily see that the

n
sum of the degrees of the vertices in a graph is always equal to twice the num
ber of its edges, i.e., for a tree with n vertices, it is 2n—2.

The proof of this fact follows from the Prüfer coding of trees. This coding 
can be interpreted as follows: the choice at random of one of all the possible 
labelled trees with n vertices (assuming that every one of the nn~2 is equally
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probable) can be carried out by placing n—2 balls into n boxes (or urns) 
randomly in such a way that every ball can end up in any box with the same 
probability. The number of boxes remaining empty equals the number of 
terminal vertices, the number of boxes containing exactly one ball equals the 
number of vertices of degree 2 and, in general, the number of boxes containing 
exactly d— 1 balls corresponds to the number of vertices of degree d in a 
randomly chosen tree. Phrased in this way, the problem can be solved easily. 
It can be shown that the distribution of trees according to the number of their

terminal vertices is approximately normal with an expected value of ~—
e

n
and a standard deviation of

e
The distribution of trees on the basis of the number of their vertices having 

degree d is also approximately normal*, with an expected value of ----------
e(d— 1)!

l+(d-2):
e{d-\)\

j (see Fig. 8).nand a standard deviation of
3(d— 1)!

Fig. 8

Let us now investigate, from a’statistical point of view, the problem of the 
height h of a rooted tree, that is, the length of the longest path starting from 
the root. (The length of a path is the number of edges making up the path). 
We recently answered this question with György Szekeres (see [9]). The cor
responding non-statistical problem can once again be answered easily: the 
height is at least 1 and at most n— 1; these and all values in between are pos
sible.

We found that the height of a typical rooted tree with n vertices asymptoti
cally approaches the value j/2«tc% 2.50663 }/«. We also determined the dis
tribution of trees on the basis of their height. It can be shown that the diameter

* This result can be proven using the solution to the classical urn problem given by J. V 
Bolotnikov (see [8]).
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of a typical tree with n vertices is of the order of ]fn. The limit distribution 
P

of —— is not known!
fn

We should mention that Cayley also investigated the problem of how many 
rooted trees there are of height h with n vertices.

APPLICATIONS IN OPERATION RESEARCH

Let us take the following practical problem: a network (cable, highways, 
railways, etc.) has to be built in such a way that it will connect any two of a 
certain number of cities. The total cost of the network must be minimized. 
Moreover, the cost of directly connecting any two cities is given. Obviously, 
the optimal network is necessarily a tree. As we have seen there are nn~2 
trees connecting n cities so the optimal network should be one of them. An 
algorithm for solving this problem leading step-by-step to the optimal solu
tion (Fig. 9) was given by Boruvka [10] (see also Kruskal [11]).

3 5

Fig. 9

Costs: 
C(l,2) = l 
C(l,3) = 1.5 
C(l,4) = 3 
C(l, 5) = 6 
C(2, 3) = 2 
C(2, 4) = 1.5 
C(2, 5) = 1.2 

C(3,4) = 8 
C(3, 5) = 4 
C(4, 5) = 3
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Another problem of operation research leading to trees under certain condi
tions is the following. Assume that we wish to establish air-routes between n 
given airports so that one can travel from any one airport to any other changing 
planes at most d— 1 times. Another restriction is that the maximal capacity 
of the airports is fixed, so that the number of planes leading and arriving at 
a given airport cannot exceed the number k. In the language of graph theory: 
construct a connected graph with n vertices, of diameter S</, where the 
degree of the vertices cannot be greater than k and the number of edges is 
minimal. Pál Erdős and Vera T. Sós have shown in their paper [12] that if 
k is not smaller than a certain lower bound Ud(n), then the optimal graph is 
always a tree (having n— 1 edges). For example, if d= 3 (i.e., if one would 
have to change planes at most twice starting from any airport in the network

to travel to any other) this lower bound is —. The optimal networks of

diameter 3 for n= 10 and k=3, 4 and 5 are shown in Fig. 10. We can see
that for k=5=-^~, the optimal graph is a tree.

n=10, k =5 N %9

Fig. 10
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TREES AND INFORMATION THEORY

Cayley made the following observation: given a binary operation AoB, 
which is not associative, that is, (AoB)oC is not necessarily equal to 
Ao(BoC), as (AB)Ct*A((BC))), then the symbols AoBoC, A0B0C0D, etc., 
have more than one meaning which will be specified only if the order of the 
operations is made clear by the use of appropriate brackets. For example, 22 

can be interpreted in five ways:

2[2<3Z)] — 2512; [(22)3]2 = 212; 2[(2S)2] = 264;

(22)(3a> = 218; [2(23)]2 = 216.

Cayley also asked the following question: how many meanings can an 
expression A1oA2o...oAn have? What he found was that to every interpreta
tion of the above symbol sequence there corresponds a rooted tree of n ter
minal vertices with all of its non-terminal vertices (excluding the root) being 
of degree 3. Such a tree is said to be a binary-code tree, because every terminal 
vertex can be coded with a sequence of zeroes and ones. There is only one 
path to every terminal vertex; following this path, we write a 0 for each left 
turn and a 1 for each right turn. Such trees are frequently called binary trees.

Figure 11 shows the trees corresponding to the different interpretations of the 
expression AoBoCoD: Note that in a binary-code tree with n terminal ver
tices there are n- 1 further vertices including the root. The following ques
tion can now be asked: how many binary-code trees of n labelled terminal ver
tices are there? Rouse-Ball found this number (Bn) to be:

n 1 • 3 • 5 -... -(2/z—3)2"~1 1 [2n-\\
Bn~ ~n\ ~ 2/1 — 1 ( n )'

Binary-code trees play an important role in information theory. Let us 
assume that we wish to code a certain number of messages with sequences of 
different lengths consisting of zeroes and ones in such a way that the code is 
“without a comma”, that is, if we write the code words one after another 
without separating them by any kind of symbol, we can still determine where 
one code word ends and another begins. This condition is satisfied through 
the use of a prefix code, where no code word is the continuation of any other 
(but if any digit is omitted from any of the code words, the prefix property of 
the code will no longer hold). To every such code there corresponds a rooted 
binary tree with as many terminal vertices as code words, and vice versa. For
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Enumerating principle:

((AoBloC)oD

0 0 0 
0 0 1 
0 1 

’ 1

A B

R

AolBo(CoD))

0
1 0 
1 1 0 
1.1 0

(Ao B)o(CoD)

1 0 
1 1 
0 0 
0 1

(Ao(BoO)oD

0 0
0 1 0 
0 1 1 
1

Aot(BoC)oD)

0
1 0 0 
1 0 1 
1 1

A: 0

B : 1 0 0

Fig.

C 1 0 1 

D : 1 1



TREES AND INFORMATION THEORY 117

example, for the code
111
1101
1100

10
01
001
000

the corresponding code tree is shown in Fig. 12:

Fig. 12

If the probabilities of the code words are given, then the best code is the one 
which has a minimal average length for the given distribution. Such an optimal 
code, or the construction of the corresponding tree, can be arrived at with 
the assistance of Huffman’s algorithm.

Binary code trees can also be interpreted using the terminology of search 
theory. Under such circumstances, every vertex corresponds to a question 
answerable with a “yes” or a “no”, and to each of these answers there belongs 
an edge emanating from the particular vertex.

For example, if someone would like to interview different people so that 
every question asked depends on the answer given to the previous question, 
then the plan of the interview can be depicted as a binary tree.
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TREES AND PERMUTATIONS

In the library of the Mathematical Institute of Oberwolfach, visitors are 
requested to return books to the appropriate places by a witty sign which runs 
as follows: “Do not forget that the transposition of neighbouring elements 
generates the complete symmetric group!” This means that any permuta
tion of the numbers 1,2, n can be obtained by successive applications of 
operations each of which consists of the transposition of a number k with 
k+ 1. For example, starting with the increasing sequence 1234, we can arrive 
at the permutation 4321 as follows:

in 1234 transpose 3 and 4 to get 1243
in 1243 transpose 2 and 3 to get 1342
in 1342 transpose 1 and 2 to get 2341
in 2341 transpose 3 and 4 to get 2431
in 2431 transpose 2 and 3 to get 3421
in 3421 transpose 3 and 4 to get 4321

In general, we can ask when (n— 1) given transposition (i,j) will generate 
the complete symmetric group. The answer: if and only if the edges (?., Pj) 
are the edges of a tree consisting of the vertices Pl, P2, ..., Pn; this was proven 
by György Pólya [13].

1234
1243
1342
2341
2431
3421
4321

An arbitrary set of transpositions will generate the complete symmetric 
group if the corresponding graph (called a Pólya-graph) is connected, that is, 
if it contains a tree with n vertices (see [14]).

For example, the transpositions (1,2), (2,3), (2,4) are associated with 
a tree, and the permutation 4321 can be derived from these transpositions as 
follows:

1234
1324
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(4321) = (23)(12)(24)(12) 2314
4312
4321

From the fact that nn~2 trees can be composed of n vertices, it follows that 
there are nn~2 distinct systems, each of which consists of n— 1 transpositions 
and generates the complete symmetric group of n elements.

TREES AND CHEMISTRY

Cayley also investigated the probable structure of paraffin whose molecules 
can be described with the formula CnH2n+2. Every carbon atoms has valence 
4 and every hydrogen atom’s is 1.

Fig. 13
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In particular can be seen in Fig. 13a, b, c. the structure of methane (CH4), 
of ethane (C2H6) and of propane (C3H8) are as follows:

The structure of butane is ambiguous, since there are two possible iso
mers (see Fig. 13d).

The paraffin molecule is a tree. If we remove the hydrogen atoms, the graph 
of the carbon atoms which remains will still be a tree (since every H is a ter
minal vertex) where every vertex has a degree of at most 4.

Therefore, the number of possible structures of paraffin molecules, C„H2„+2, 
is equal to the number of labelled trees each of whose vertices has a degree 
^4. Thus, this question too, has led us to the enumeration problem related 
to certain trees.

These investigations were carried further by Pólya and others.

TREES AND BIOLOGY

Earlier, we mentioned genealogical trees. They play an important role in 
the theory of branch processes. For simplicity, I will treat only the reproduc
tion of bacteria. Let us assume that, after certain time span, every bacterium 
either divides into two or ceases to exist. Under such conditions, the genea
logical tree of a bacterium is a binary code tree.

I will mention only the following question here: in how many ways is it 
possible for a bacterium to have an rz-th generation of exactly 2k members. 
Let us denote the number of possibility by T(n, 2k). It can easily be shown 
that the following recursive formula holds:

r(n+l,2fc)= 2 T(n, 21) ("')

so that the appropriate generating function*

k

* In general, if T(k) is a function defined on the positive integers (usually the solution 
for k=0,1,2,... of a combinatorial problem) then by its generating function we mean 
the infinite sum

P(x) = T(p)+T(l)x+T(2)x* + ... .

If T(k)—0 is beyond a certain k, then the sum will be finite. (Gy. Katona)
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will satisfy the recursive formula:

(+) A+i(*) = A(l+*2),
so that

P1(x)= 1+JC2 
P2(x) = 2+2x2+x4,
P3(x) = 5 + 8x2+8x4+4x6+x8, 

and so on. For an example see Fig. 14.

T(3, 4) = 8.

A^X A):

The recursion under (+) is a special case of a more general formula for 
the Galton-Watson process in the theory of branching processes. Although 
there is more that could be said about the theory of trees and its applications, 
I hope that what I have said provides a glimpse into the characteristics of 
the theory and its wide applicability in various branches of mathematics.
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